BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11738922)

  • 21. Shape of lens epithelial cells after intraocular lens implantation.
    Majima K; Majima Y
    J Cataract Refract Surg; 2001 May; 27(5):745-52. PubMed ID: 11377907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical and cytological characters of carbon, titanium surface modified intraocular lens in rabbit eyes.
    Yuan Z
    Graefes Arch Clin Exp Ophthalmol; 2003 Oct; 241(10):840-4. PubMed ID: 12937994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scanning electron microscopy analysis of a sputnik-like intraocular lens 28 years after implantation.
    Ferrer C; Abu-Mustafa SK; Alió JL
    J Refract Surg; 2009 Sep; 25(9):788-91. PubMed ID: 19772265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Posterior capsule opacification with 3 intraocular lenses: 12-year prospective study.
    Rønbeck M; Kugelberg M
    J Cataract Refract Surg; 2014 Jan; 40(1):70-6. PubMed ID: 24238943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular response and membrane formation on the surface of implanted posterior chamber intraocular lens in rabbit.
    Yang F; Li S; Liu Y
    Yan Ke Xue Bao; 1997 Mar; 13(1):41-5. PubMed ID: 11189326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental neodymium:YAG laser damage to acrylic, poly(methyl methacrylate), and silicone intraocular lens materials.
    Newland TJ; McDermott ML; Eliott D; Hazlett LD; Apple DJ; Lambert RJ; Barrett RP
    J Cataract Refract Surg; 1999 Jan; 25(1):72-6. PubMed ID: 9888080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological compatibility of polymethyl methacrylate, hydrophilic acrylic and hydrophobic acrylic intraocular lenses.
    Barbour W; Saika S; Miyamoto T; Ohnishi Y
    Ophthalmic Res; 2005; 37(5):255-61. PubMed ID: 16037680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ocular growth in newborn rabbit eyes implanted with a poly(methyl methacrylate) or silicone intraocular lens.
    Kugelberg U; Zetterström C; Lundgren B; Syrén-Nordqvist S
    J Cataract Refract Surg; 1997; 23 Suppl 1():629-34. PubMed ID: 9278816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incidence of anterior intraocular lens precipitates after combined phacotrabeculectomy.
    Chang BY; Loh R; Savides R; Atkins DA
    J Cataract Refract Surg; 2000 Mar; 26(3):398-401. PubMed ID: 10713236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speed of capsular bend formation at the optic edge of acrylic, silicone, and poly(methyl methacrylate) lenses.
    Nishi O; Nishi K; Akura J
    J Cataract Refract Surg; 2002 Mar; 28(3):431-7. PubMed ID: 11973089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lens epithelial cell outgrowth and matrix formation on intraocular lenses in rabbit eyes.
    Saika S; Ohmi S; Kanagawa R; Tanaka S; Ohnishi Y; Ooshima A; Yamanaka A
    J Cataract Refract Surg; 1996; 22 Suppl 1():835-40. PubMed ID: 9279681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in posterior capsule opacification after poly(methyl methacrylate), silicone, and acrylic intraocular lens implantation.
    Hayashi K; Hayashi H; Nakao F; Hayashi F
    J Cataract Refract Surg; 2001 Jun; 27(6):817-24. PubMed ID: 11408125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular adhesiveness on implanted lenses in monkeys.
    Ishibashi T; Sugai S; Kubota T; Ohnishi Y; Inomata H
    Graefes Arch Clin Exp Ophthalmol; 1990; 228(4):356-62. PubMed ID: 2401421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intraocular lens factors that may affect anterior capsule contraction.
    Hayashi K; Hayashi H
    Ophthalmology; 2005 Feb; 112(2):286-92. PubMed ID: 15691565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo study of a fluorocarbon polymer-coated intraocular lens in a rabbit model.
    Legeais JM; Werner LP; Legeay G; Briat B; Renard G
    J Cataract Refract Surg; 1998 Mar; 24(3):371-9. PubMed ID: 9559474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo study of cell reactions on poly(methyl methacrylate) intraocular lenses with different surface properties.
    Amon M; Menapace R; Radax U; Freyler H
    J Cataract Refract Surg; 1996; 22 Suppl 1():825-9. PubMed ID: 9279679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capsule contraction after continuous curvilinear capsulorhexis: poly(methyl methacrylate) versus silicone intraocular lenses.
    Cochener B; Jacq PL; Colin J
    J Cataract Refract Surg; 1999 Oct; 25(10):1362-9. PubMed ID: 10511936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of posterior capsule opacification development with 3 intraocular lens types: five-year prospective study.
    Rönbeck M; Zetterström C; Wejde G; Kugelberg M
    J Cataract Refract Surg; 2009 Nov; 35(11):1935-40. PubMed ID: 19878826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction with intraocular lens materials: does heavy silicone oil act like silicone oil?
    Yaman A; Saatci AO; Sarioğlu S; Oner FH; Durak I
    J Cataract Refract Surg; 2007 Jan; 33(1):127-9. PubMed ID: 17189807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological appearance and size of contact zones of piggyback intraocular lenses.
    Findl O; Menapace R; Georgopoulos M; Kiss B; Petternel V; Rainer G
    J Cataract Refract Surg; 2001 Feb; 27(2):219-23. PubMed ID: 11226785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.