BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11739112)

  • 1. Spontaneous renal blood flow autoregulation curves in conscious sinoaortic baroreceptor-denervated rats.
    Pires SL; Julien C; Chapuis B; Sassard J; Barrès C
    Am J Physiol Renal Physiol; 2002 Jan; 282(1):F51-8. PubMed ID: 11739112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Autoregulation of renal blood flow and blood pressure variability in the conscious rat].
    Pires SL; Barrès C; Sassard J; Julien C
    Arch Mal Coeur Vaiss; 2001 Aug; 94(8):818-21. PubMed ID: 11575210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal blood flow dynamics and arterial pressure lability in the conscious rat.
    Pires SL; Barrès C; Sassard J; Julien C
    Hypertension; 2001 Jul; 38(1):147-52. PubMed ID: 11463776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
    Just A; Wittmann U; Ehmke H; Kirchheim HR
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):275-90. PubMed ID: 9481688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation.
    Just A; Arendshorst WJ
    Am J Physiol Regul Integr Comp Physiol; 2003 Sep; 285(3):R619-31. PubMed ID: 12791588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog.
    Just A; Ehmke H; Toktomambetova L; Kirchheim HR
    Am J Physiol Renal Physiol; 2001 Jun; 280(6):F1062-71. PubMed ID: 11352846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resetting of renal blood autoregulation during acute blood pressure reduction in hypertensive rats.
    Iversen BM; Kvam FI; Matre K; Ofstad J
    Am J Physiol; 1998 Aug; 275(2):R343-9. PubMed ID: 9688667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resetting of the pressure range for blood flow autoregulation in the rat kidney.
    Holm L; Morsing P; Casellas D; Persson AE
    Acta Physiol Scand; 1990 Mar; 138(3):395-401. PubMed ID: 2327265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of sinoaortic denervation to study the role of baroreceptors in cardiovascular regulation.
    Schreihofer AM; Sved AF
    Am J Physiol; 1994 May; 266(5 Pt 2):R1705-10. PubMed ID: 8203654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelium modulates renal blood flow but not autoregulation.
    Beierwaltes WH; Sigmon DH; Carretero OA
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F943-9. PubMed ID: 1621818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice.
    Just A; Arendshorst WJ
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1489-500. PubMed ID: 17728380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback.
    Just A; Arendshorst WJ
    J Physiol; 2005 Dec; 569(Pt 3):959-74. PubMed ID: 16223765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO dependency of RBF and autoregulation in the spontaneously hypertensive rat.
    Racasan S; Joles JA; Boer P; Koomans HA; Braam B
    Am J Physiol Renal Physiol; 2003 Jul; 285(1):F105-12. PubMed ID: 12631552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of soluble guanylate cyclase in renal hemodynamics and autoregulation in the rat.
    Dautzenberg M; Kahnert A; Stasch JP; Just A
    Am J Physiol Renal Physiol; 2014 Nov; 307(9):F1003-12. PubMed ID: 25209860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow.
    Sorensen CM; Leyssac PP; Skott O; Holstein-Rathlou NH
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R1017-24. PubMed ID: 10956261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for preserved cerebrovascular autoregulation during hypertension in rats after sinoaortic denervation.
    Talman WT; Dragon DN
    Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S77-9. PubMed ID: 9072452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total and local renal blood flow and filtration in the rat during reduced renal arterial blood pressure.
    Hope A; Clausen G; Rosivall L
    Acta Physiol Scand; 1981 Dec; 113(4):455-63. PubMed ID: 7348030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonic and phasic influences of nitric oxide on renal blood flow autoregulation in conscious dogs.
    Just A; Ehmke H; Wittmann U; Kirchheim HR
    Am J Physiol; 1999 Mar; 276(3):F442-9. PubMed ID: 10070168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.