BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11739568)

  • 1. Schwann cells express active agrin and enhance aggregation of acetylcholine receptors on muscle fibers.
    Yang JF; Cao G; Koirala S; Reddy LV; Ko CP
    J Neurosci; 2001 Dec; 21(24):9572-84. PubMed ID: 11739568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregates of acetylcholine receptors are not observed under anti-agrin staining schwann cell processes at the frog neuromuscular junction.
    Werle MJ; Jones MA; Stanco AM
    J Neurobiol; 1999 Jul; 40(1):45-54. PubMed ID: 10398070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of perisynaptic Schwann cells in development of neuromuscular junctions in the frog (Xenopus laevis).
    Herrera AA; Qiang H; Ko CP
    J Neurobiol; 2000 Dec; 45(4):237-54. PubMed ID: 11077428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early appearance of and neuronal contribution to agrin-like molecules at embryonic frog nerve-muscle synapses formed in culture.
    Cohen MW; Godfrey EW
    J Neurosci; 1992 Aug; 12(8):2982-92. PubMed ID: 1322981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse.
    Brockhausen J; Cole RN; Gervásio OL; Ngo ST; Noakes PG; Phillips WD
    Dev Neurobiol; 2008 Aug; 68(9):1153-69. PubMed ID: 18506821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrin fragments differentially induce ectopic aggregation of acetylcholine receptors in myotomal muscles of Xenopus embryos.
    Godfrey EW; Roe J; Heathcote RD
    J Neurobiol; 2000 Sep; 44(4):436-45. PubMed ID: 10945898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors.
    Camilleri AA; Willmann R; Sadasivam G; Lin S; Rüegg MA; Gesemann M; Fuhrer C
    BMC Neurosci; 2007 Jul; 8():46. PubMed ID: 17605785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrin-deficient myotube retains its acetylcholine receptor aggregation ability when challenged with agrin.
    Pun S; Ng YP; Yang JF; Ip NY; Tsim KW
    J Neurochem; 1997 Dec; 69(6):2555-63. PubMed ID: 9375689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoform pattern and AChR aggregation activity of agrin expressed by embryonic chick retinal ganglion neurons.
    Annies M; Kröger S
    Mol Cell Neurosci; 2002 Jul; 20(3):525-35. PubMed ID: 12139927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors.
    Smith CL; Mittaud P; Prescott ED; Fuhrer C; Burden SJ
    J Neurosci; 2001 May; 21(9):3151-60. PubMed ID: 11312300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laminin and alpha7beta1 integrin regulate agrin-induced clustering of acetylcholine receptors.
    Burkin DJ; Kim JE; Gu M; Kaufman SJ
    J Cell Sci; 2000 Aug; 113 ( Pt 16)():2877-86. PubMed ID: 10910772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal interactions between perisynaptic Schwann cells and regenerating nerve terminals at the frog neuromuscular junction.
    Koirala S; Qiang H; Ko CP
    J Neurobiol; 2000 Sep; 44(3):343-60. PubMed ID: 10942887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering.
    Madhavan R; Zhao XT; Ruegg MA; Peng HB
    Mol Cell Neurosci; 2005 Mar; 28(3):403-16. PubMed ID: 15737732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction.
    Godfrey EW; Roe J; Heathcote RD
    Dev Biol; 1999 Jan; 205(1):22-32. PubMed ID: 9882495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agrin and acetylcholine receptors are removed from abandoned synaptic sites at reinnervated frog neuromuscular junctions.
    Stanco AM; Werle MJ
    J Neurobiol; 1997 Dec; 33(7):999-1018. PubMed ID: 9407019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis.
    Peng HB; Yang JF; Dai Z; Lee CW; Hung HW; Feng ZH; Ko CP
    J Neurosci; 2003 Jun; 23(12):5050-60. PubMed ID: 12832528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapse-forming axons and recombinant agrin induce microprocess formation on myotubes.
    Uhm CS; Neuhuber B; Lowe B; Crocker V; Daniels MP
    J Neurosci; 2001 Dec; 21(24):9678-89. PubMed ID: 11739577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of purified recombinant neural and muscle agrin on skeletal muscle fibers in vivo.
    Bezakova G; Helm JP; Francolini M; Lømo T
    J Cell Biol; 2001 Jun; 153(7):1441-52. PubMed ID: 11425874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the size and distribution of agrin-induced postsynaptic-like apparatus in adult skeletal muscle by electrical muscle activity.
    Mathiesen I; Rimer M; Ashtari O; Cohen I; McMahan UJ; Lømo T
    Mol Cell Neurosci; 1999 Mar; 13(3):207-17. PubMed ID: 10328882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site.
    Gesemann M; Denzer AJ; Ruegg MA
    J Cell Biol; 1995 Feb; 128(4):625-36. PubMed ID: 7860635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.