BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11739568)

  • 21. The role of nerve- versus muscle-derived factors in mammalian neuromuscular junction formation.
    Lin S; Landmann L; Ruegg MA; Brenner HR
    J Neurosci; 2008 Mar; 28(13):3333-40. PubMed ID: 18367600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rodent nerve-muscle cell culture system for studies of neuromuscular junction development: refinements and applications.
    Daniels MP; Lowe BT; Shah S; Ma J; Samuelsson SJ; Lugo B; Parakh T; Uhm CS
    Microsc Res Tech; 2000 Apr; 49(1):26-37. PubMed ID: 10757876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic effects of neuregulin and agrin on muscle acetylcholine receptor expression.
    Li Q; Esper RM; Loeb JA
    Mol Cell Neurosci; 2004 Aug; 26(4):558-69. PubMed ID: 15276157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuregulin-2 is synthesized by motor neurons and terminal Schwann cells and activates acetylcholine receptor transcription in muscle cells expressing ErbB4.
    Rimer M; Prieto AL; Weber JL; Colasante C; Ponomareva O; Fromm L; Schwab MH; Lai C; Burden SJ
    Mol Cell Neurosci; 2004 Jun; 26(2):271-81. PubMed ID: 15207852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of glial cells in the formation and maintenance of the neuromuscular junction.
    Feng Z; Ko CP
    Ann N Y Acad Sci; 2008; 1132():19-28. PubMed ID: 18567850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of agrin and laminin on acetylcholine receptor dynamics in vitro.
    Bruneau EG; Macpherson PC; Goldman D; Hume RI; Akaaboune M
    Dev Biol; 2005 Dec; 288(1):248-58. PubMed ID: 16256100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP potentiates agrin-induced AChR aggregation in cultured myotubes: activation of RhoA in P2Y1 nucleotide receptor signaling at vertebrate neuromuscular junctions.
    Ling KK; Siow NL; Choi RC; Ting AK; Kong LW; Tsim KW
    J Biol Chem; 2004 Jul; 279(30):31081-8. PubMed ID: 15145960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perisynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody.
    Astrow SH; Qiang H; Ko CP
    J Neurocytol; 1998 Sep; 27(9):667-81. PubMed ID: 10447241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuromuscular synapse formation in mice lacking motor neuron- and skeletal muscle-derived Neuregulin-1.
    Jaworski A; Burden SJ
    J Neurosci; 2006 Jan; 26(2):655-61. PubMed ID: 16407563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of acetylcholine receptor clustering by the tumor suppressor APC.
    Wang J; Jing Z; Zhang L; Zhou G; Braun J; Yao Y; Wang ZZ
    Nat Neurosci; 2003 Oct; 6(10):1017-8. PubMed ID: 14502292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Agrin/MuSK signaling pathway is spatially segregated from the neuregulin/ErbB receptor signaling pathway at the neuromuscular junction.
    Trinidad JC; Fischbach GD; Cohen JB
    J Neurosci; 2000 Dec; 20(23):8762-70. PubMed ID: 11102484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction.
    Madhavan R; Gong ZL; Ma JJ; Chan AW; Peng HB
    PLoS One; 2009 Dec; 4(12):e8478. PubMed ID: 20041195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-beta1.
    Feng Z; Ko CP
    J Neurosci; 2008 Sep; 28(39):9599-609. PubMed ID: 18815246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Schwann cell-derived neuregulin-2alpha can function as a cell-attached activator of muscle acetylcholine receptor expression.
    Ponomareva ON; Fischer TM; Lai C; Rimer M
    Glia; 2006 Nov; 54(6):630-7. PubMed ID: 16944454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions.
    Reist NE; Werle MJ; McMahan UJ
    Neuron; 1992 May; 8(5):865-8. PubMed ID: 1316763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AchR) aggregates in skeletal muscle fibers.
    Bezakova G; Lømo T
    J Cell Biol; 2001 Jun; 153(7):1453-63. PubMed ID: 11425875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural agrin controls acetylcholine receptor stability in skeletal muscle fibers.
    Bezakova G; Rabben I; Sefland I; Fumagalli G; Lømo T
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9924-9. PubMed ID: 11493710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle-specific agrin isoforms reduce phosphorylation of AChR gamma and delta subunits in cultured muscle cells.
    Meier T; Ruegg MA; Wallace BG
    Mol Cell Neurosci; 1998 Jul; 11(4):206-16. PubMed ID: 9675052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sialic acid inhibits agrin signaling in C2 myotubes.
    Grow WA; Gordon H
    Cell Tissue Res; 2000 Feb; 299(2):273-9. PubMed ID: 10741468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Src-family kinases stabilize the neuromuscular synapse in vivo via protein interactions, phosphorylation, and cytoskeletal linkage of acetylcholine receptors.
    Sadasivam G; Willmann R; Lin S; Erb-Vögtli S; Kong XC; Rüegg MA; Fuhrer C
    J Neurosci; 2005 Nov; 25(45):10479-93. PubMed ID: 16280586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.