BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 11739570)

  • 1. Roles for mitochondrial and reverse mode Na+/Ca2+ exchange and the plasmalemma Ca2+ ATPase in post-tetanic potentiation at crayfish neuromuscular junctions.
    Zhong N; Beaumont V; Zucker RS
    J Neurosci; 2001 Dec; 21(24):9598-607. PubMed ID: 11739570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fowl (Gallus domesticus) sperm motility depends upon mitochondrial calcium cycling driven by extracellular sodium.
    Froman DP; Feltmann AJ
    Biol Reprod; 2005 Jan; 72(1):97-101. PubMed ID: 15355879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different mechanisms of Ca2+ regulation that influence synaptic transmission: comparison between crayfish and Drosophila neuromuscular junctions.
    Desai-Shah M; Cooper RL
    Synapse; 2009 Dec; 63(12):1100-21. PubMed ID: 19650116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction.
    Lin JW; Fu Q; Allana T
    J Neurophysiol; 2005 Jul; 94(1):377-86. PubMed ID: 15985697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KB-R7943 Inhibits the Mitochondrial Ca
    Namekata I; Odaka R; Hamaguchi S; Tanaka H
    Biol Pharm Bull; 2020 Dec; 43(12):1993-1996. PubMed ID: 33028749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation.
    Mulkey RM; Zucker RS
    J Neurosci; 1992 Nov; 12(11):4327-36. PubMed ID: 1432097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial regulation of sarcoplasmic reticulum Ca2+ content in vascular smooth muscle cells.
    Poburko D; Liao CH; van Breemen C; Demaurex N
    Circ Res; 2009 Jan; 104(1):104-12. PubMed ID: 19023135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of canine (NCX1.1) and Drosophila (CALX1.1) Na(+)-Ca(2+) exchangers by 7-chloro-3,5-dihydro-5-phenyl-1H-4,1-benzothiazepine-2-one (CGP-37157).
    Omelchenko A; Bouchard R; Le HD; Choptiany P; Visen N; Hnatowich M; Hryshko LV
    J Pharmacol Exp Ther; 2003 Sep; 306(3):1050-7. PubMed ID: 12808003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ clearance at growth cones produced by crayfish motor axons in an explant culture.
    Rumpal N; Lnenicka GA
    J Neurophysiol; 2003 Jun; 89(6):3225-34. PubMed ID: 12783956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plasma membrane Na+/Ca2+ exchange inhibitor KB-R7943 is also a potent inhibitor of the mitochondrial Ca2+ uniporter.
    Santo-Domingo J; Vay L; Hernández-Sanmiguel E; Lobatón CD; Moreno A; Montero M; Alvarez J
    Br J Pharmacol; 2007 Jul; 151(5):647-54. PubMed ID: 17471180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C.
    Yang F; He XP; Russell J; Lu B
    J Cell Biol; 2003 Nov; 163(3):511-23. PubMed ID: 14610054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of plasmalemmal Na(+)/Ca(2+) exchange by mitochondrial Na(+)/Ca(2+) exchange inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) in cerebellar granule cells.
    Czyz A; Kiedrowski L
    Biochem Pharmacol; 2003 Dec; 66(12):2409-11. PubMed ID: 14637198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of mitochondrial dysfunction in cardiac glycoside toxicity.
    Liu T; Brown DA; O'Rourke B
    J Mol Cell Cardiol; 2010 Nov; 49(5):728-36. PubMed ID: 20620145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157.
    Cox DA; Conforti L; Sperelakis N; Matlib MA
    J Cardiovasc Pharmacol; 1993 Apr; 21(4):595-9. PubMed ID: 7681905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological investigation of mitochondrial ca(2+) transport in central neurons: studies with CGP-37157, an inhibitor of the mitochondrial Na(+)-Ca(2+) exchanger.
    Scanlon JM; Brocard JB; Stout AK; Reynolds IJ
    Cell Calcium; 2000; 28(5-6):317-27. PubMed ID: 11115371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instrumental role of Na+ in NMDA excitotoxicity in glucose-deprived and depolarized cerebellar granule cells.
    Czyz A; Baranauskas G; Kiedrowski L
    J Neurochem; 2002 Apr; 81(2):379-89. PubMed ID: 12064485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic alpha2-receptors regulate reverse Na+/Ca2+-exchange and transmitter release in Na+-loaded peripheral sympathetic nerves.
    Török TL; Nagykáldi Z; Sáska Z; Kovács T; Nada SA; Zilliikens S; Magyar K; Sylvester Vizi E
    Neurochem Int; 2004 Oct; 45(5):699-711. PubMed ID: 15234113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological discrimination of plasmalemmal and mitochondrial sodium-calcium exchanger in cardiomyocyte-derived H9c2 cells.
    Namekata I; Hamaguchi S; Tanaka H
    Biol Pharm Bull; 2015; 38(1):147-50. PubMed ID: 25744471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ATP-dependent calcium regulation in modulation of Drosophila synaptic thermotolerance.
    Klose MK; Boulianne GL; Robertson RM; Atwood HL
    J Neurophysiol; 2009 Aug; 102(2):901-13. PubMed ID: 19474168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequestration of depolarization-induced Ca2+ loads by mitochondria and Ca2+ efflux via mitochondrial Na+/Ca2+ exchanger in bovine adrenal chromaffin cells.
    Sorimachi M; Nishimura S; Yamagami K
    Jpn J Physiol; 1999 Feb; 49(1):35-46. PubMed ID: 10219107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.