These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 11739574)

  • 1. Estimating transmitter release rates from postsynaptic current fluctuations.
    Neher E; Sakaba T
    J Neurosci; 2001 Dec; 21(24):9638-54. PubMed ID: 11739574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse.
    Sakaba T; Neher E
    J Neurosci; 2001 Jan; 21(2):462-76. PubMed ID: 11160426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of held.
    Neher E; Sakaba T
    J Neurosci; 2001 Jan; 21(2):444-61. PubMed ID: 11160425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating transmitter release rates and quantal amplitudes in central synapses from postsynaptic current fluctuations.
    Stepanyuk AR; Boychuk YA; Tsugorka TN; Drebot YI; Lushnikova IV; Pivneva TA; Belan PV
    Fiziol Zh (1994); 2004; 50(4):22-32. PubMed ID: 15460024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet analysis of nonstationary fluctuations of Monte Carlo-simulated excitatory postsynaptic currents.
    Aristizabal F; Glavinovic MI
    Biophys J; 2003 Oct; 85(4):2170-85. PubMed ID: 14507683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of Held synapse.
    Yamashita T; Ishikawa T; Takahashi T
    J Neurosci; 2003 May; 23(9):3633-8. PubMed ID: 12736334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse.
    Wölfel M; Schneggenburger R
    J Neurosci; 2003 Aug; 23(18):7059-68. PubMed ID: 12904466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of quantal size and number of functional active zones at the calyx of Held synapse by nonstationary EPSC variance analysis.
    Meyer AC; Neher E; Schneggenburger R
    J Neurosci; 2001 Oct; 21(20):7889-900. PubMed ID: 11588162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reduced release probability of releasable vesicles during recovery from short-term synaptic depression.
    Wu LG; Borst JG
    Neuron; 1999 Aug; 23(4):821-32. PubMed ID: 10482247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action potential bursts enhance transmitter release at a giant central synapse.
    Zhang B; Sun L; Yang YM; Huang HP; Zhu FP; Wang L; Zhang XY; Guo S; Zuo PL; Zhang CX; Ding JP; Wang LY; Zhou Z
    J Physiol; 2011 May; 589(Pt 9):2213-27. PubMed ID: 21486773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses.
    Silver RA; Momiyama A; Cull-Candy SG
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):881-902. PubMed ID: 9660900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental transformation of the release modality at the calyx of Held synapse.
    Fedchyshyn MJ; Wang LY
    J Neurosci; 2005 Apr; 25(16):4131-40. PubMed ID: 15843616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential control of synaptic and ectopic vesicular release of glutamate.
    Matsui K; Jahr CE
    J Neurosci; 2004 Oct; 24(41):8932-9. PubMed ID: 15483112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held.
    Korogod N; Lou X; Schneggenburger R
    J Neurosci; 2005 May; 25(21):5127-37. PubMed ID: 15917453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Most vesicles in a central nerve terminal participate in recycling.
    Xue L; Sheng J; Wu XS; Wu W; Luo F; Shin W; Chiang HC; Wu LG
    J Neurosci; 2013 May; 33(20):8820-6. PubMed ID: 23678124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release probability modulates short-term plasticity at a rat giant terminal.
    Oleskevich S; Clements J; Walmsley B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):513-23. PubMed ID: 10766930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium sensitivity of glutamate release in a calyx-type terminal.
    Bollmann JH; Sakmann B; Borst JG
    Science; 2000 Aug; 289(5481):953-7. PubMed ID: 10937999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses.
    Billups B; Forsythe ID
    J Neurosci; 2002 Jul; 22(14):5840-7. PubMed ID: 12122046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem.
    Borst JG; Sakmann B
    J Physiol; 1999 Nov; 521 Pt 1(Pt 1):123-33. PubMed ID: 10562339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse.
    Hosoi N; Sakaba T; Neher E
    J Neurosci; 2007 Dec; 27(52):14286-98. PubMed ID: 18160636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.