BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11739630)

  • 1. Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses.
    Tovey SC; de Smet P; Lipp P; Thomas D; Young KW; Missiaen L; De Smedt H; Parys JB; Berridge MJ; Thuring J; Holmes A; Bootman MD
    J Cell Sci; 2001 Nov; 114(Pt 22):3979-89. PubMed ID: 11739630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating: kinetic implications for the durations of calcium puffs in cells.
    Mak DO; McBride S; Foskett JK
    J Gen Physiol; 2001 Apr; 117(4):299-314. PubMed ID: 11279251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria.
    Straub SV; Giovannucci DR; Yule DI
    J Gen Physiol; 2000 Oct; 116(4):547-60. PubMed ID: 11004204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IP(3)-mediated Ca(2+) signals in human neuroblastoma SH-SY5Y cells with exogenous overexpression of type 3 IP(3) receptor.
    Van Acker K; Nadif Kasri N; De Smet P; Parys JB; De Smedt H; Missiaen L; Callewaert G
    Cell Calcium; 2002 Aug; 32(2):71-81. PubMed ID: 12161107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors determining the recruitment of inositol trisphosphate receptor channels during calcium puffs.
    Dickinson GD; Parker I
    Biophys J; 2013 Dec; 105(11):2474-84. PubMed ID: 24314078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic properties of elementary Ca2+ release sites in non-excitable cells.
    Thomas D; Lipp P; Tovey SC; Berridge MJ; Li W; Tsien RY; Bootman MD
    Curr Biol; 2000 Jan; 10(1):8-15. PubMed ID: 10660296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of inositol 1,4,5-trisphosphate receptors in Ca(2+) signalling and the generation of arrhythmias in rat atrial myocytes.
    Mackenzie L; Bootman MD; Laine M; Berridge MJ; Thuring J; Holmes A; Li WH; Lipp P
    J Physiol; 2002 Jun; 541(Pt 2):395-409. PubMed ID: 12042347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the statistics of elementary calcium release events.
    Ullah G; Jung P
    Biophys J; 2006 May; 90(10):3485-95. PubMed ID: 16513779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Ca
    Lock JT; Smith IF; Parker I
    Cell Calcium; 2017 May; 63():43-47. PubMed ID: 28108028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Termination of calcium puffs and coupled closings of inositol trisphosphate receptor channels.
    Wiltgen SM; Dickinson GD; Swaminathan D; Parker I
    Cell Calcium; 2014 Sep; 56(3):157-68. PubMed ID: 25016315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation of IP(3)-mediated Ca(2+) waves in Xenopus oocytes.
    Marchant J; Callamaras N; Parker I
    EMBO J; 1999 Oct; 18(19):5285-99. PubMed ID: 10508162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous signalling pathways and caged IP
    Keebler MV; Taylor CW
    J Cell Sci; 2017 Nov; 130(21):3728-3739. PubMed ID: 28893841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation.
    Cárdenas C; Liberona JL; Molgó J; Colasante C; Mignery GA; Jaimovich E
    J Cell Sci; 2005 Jul; 118(Pt 14):3131-40. PubMed ID: 16014380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca2+ signaling.
    Bruce JI; Shuttleworth TJ; Giovannucci DR; Yule DI
    J Biol Chem; 2002 Jan; 277(2):1340-8. PubMed ID: 11694504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels.
    Peppiatt CM; Collins TJ; Mackenzie L; Conway SJ; Holmes AB; Bootman MD; Berridge MJ; Seo JT; Roderick HL
    Cell Calcium; 2003 Jul; 34(1):97-108. PubMed ID: 12767897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IP(3) receptor function and localization in myotubes: an unexplored Ca(2+) signaling pathway in skeletal muscle.
    Powell JA; Carrasco MA; Adams DS; Drouet B; Rios J; Müller M; Estrada M; Jaimovich E
    J Cell Sci; 2001 Oct; 114(Pt 20):3673-83. PubMed ID: 11707519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crucial role of type 1, but not type 3, inositol 1,4,5-trisphosphate (IP(3)) receptors in IP(3)-induced Ca(2+) release, capacitative Ca(2+) entry, and proliferation of A7r5 vascular smooth muscle cells.
    Wang Y; Chen J; Wang Y; Taylor CW; Hirata Y; Hagiwara H; Mikoshiba K; Toyo-oka T; Omata M; Sakaki Y
    Circ Res; 2001 Feb; 88(2):202-9. PubMed ID: 11157673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the type III InsP(3) receptor by InsP(3) and calcium.
    O'Neill AF; Hagar RE; Zipfel WR; Nathanson MH; Ehrlich BE
    Biochem Biophys Res Commun; 2002 Jun; 294(3):719-25. PubMed ID: 12056830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the type 1 inositol 1,4,5-trisphosphate receptor by 2-aminoethoxydiphenylborate.
    Bilmen JG; Michelangeli F
    Cell Signal; 2002 Nov; 14(11):955-60. PubMed ID: 12220621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Down-regulation of inositol 1,4,5-trisphosphate receptor in cells stably expressing the constitutively active angiotensin II N111G-AT(1) receptor.
    Auger-Messier M; Arguin G; Chaloux B; Leduc R; Escher E; Guillemette G
    Mol Endocrinol; 2004 Dec; 18(12):2967-80. PubMed ID: 15331757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.