These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 11740502)
1. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Grosshans DR; Clayton DA; Coultrap SJ; Browning MD Nat Neurosci; 2002 Jan; 5(1):27-33. PubMed ID: 11740502 [TBL] [Abstract][Full Text] [Related]
2. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. Yu SY; Wu DC; Liu L; Ge Y; Wang YT J Neurochem; 2008 Jul; 106(2):889-99. PubMed ID: 18466342 [TBL] [Abstract][Full Text] [Related]
3. Chronic nicotine-induced switch in Src-family kinase signaling for long-term potentiation induction in hippocampal CA1 pyramidal cells. Yamazaki Y; Jia Y; Wong JK; Sumikawa K Eur J Neurosci; 2006 Dec; 24(11):3271-84. PubMed ID: 17156388 [TBL] [Abstract][Full Text] [Related]
4. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483 [TBL] [Abstract][Full Text] [Related]
5. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Liao D; Hessler NA; Malinow R Nature; 1995 Jun; 375(6530):400-4. PubMed ID: 7760933 [TBL] [Abstract][Full Text] [Related]
6. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Weisskopf MG; Nicoll RA Nature; 1995 Jul; 376(6537):256-9. PubMed ID: 7617037 [TBL] [Abstract][Full Text] [Related]
7. Bidirectional redistribution of AMPA but not NMDA receptors after perforant path simulation in the adult rat hippocampus in vivo. Moga DE; Shapiro ML; Morrison JH Hippocampus; 2006; 16(11):990-1003. PubMed ID: 17039486 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of NMDA and AMPA receptor subunits in rat dorsal and ventral hippocampus. Pandis C; Sotiriou E; Kouvaras E; Asprodini E; Papatheodoropoulos C; Angelatou F Neuroscience; 2006 Jun; 140(1):163-75. PubMed ID: 16542781 [TBL] [Abstract][Full Text] [Related]
9. Chronic DHEAS administration facilitates hippocampal long-term potentiation via an amplification of Src-dependent NMDA receptor signaling. Chen L; Miyamoto Y; Furuya K; Dai XN; Mori N; Sokabe M Neuropharmacology; 2006 Sep; 51(3):659-70. PubMed ID: 16806295 [TBL] [Abstract][Full Text] [Related]
10. Modulation of AMPA receptor unitary conductance by synaptic activity. Benke TA; Lüthi A; Isaac JT; Collingridge GL Nature; 1998 Jun; 393(6687):793-7. PubMed ID: 9655394 [TBL] [Abstract][Full Text] [Related]
11. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus. Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131 [TBL] [Abstract][Full Text] [Related]
12. AMPA silencing is a prerequisite for developmental long-term potentiation in the hippocampal CA1 region. Abrahamsson T; Gustafsson B; Hanse E J Neurophysiol; 2008 Nov; 100(5):2605-14. PubMed ID: 18799599 [TBL] [Abstract][Full Text] [Related]
13. Late phase of long-term potentiation induced by co-application of N-methyl-d-aspartic acid and the antagonist of NR2B-containing N-methyl-d-aspartic acid receptors in rat hippocampus. Oh-Nishi A; Saji M; Satoh SZ; Ogata M; Suzuki N Neuroscience; 2009 Mar; 159(1):127-35. PubMed ID: 19010396 [TBL] [Abstract][Full Text] [Related]
14. Pregnenolone sulfate enhances long-term potentiation in CA1 in rat hippocampus slices through the modulation of N-methyl-D-aspartate receptors. Sliwinski A; Monnet FP; Schumacher M; Morin-Surun MP J Neurosci Res; 2004 Dec; 78(5):691-701. PubMed ID: 15505794 [TBL] [Abstract][Full Text] [Related]
15. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
16. CaM kinase II and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region. Moriguchi S; Shioda N; Han F; Narahashi T; Fukunaga K J Neurochem; 2008 Aug; 106(3):1092-103. PubMed ID: 18445137 [TBL] [Abstract][Full Text] [Related]
17. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Groc L; Heine M; Cognet L; Brickley K; Stephenson FA; Lounis B; Choquet D Nat Neurosci; 2004 Jul; 7(7):695-6. PubMed ID: 15208630 [TBL] [Abstract][Full Text] [Related]
19. Contribution of AMPA and NMDA receptors to early and late phases of LTP in hippocampal slices. Dozmorov M; Li R; Abbas AK; Hellberg F; Farre C; Huang FS; Jilderos B; Wigström H Neurosci Res; 2006 Jun; 55(2):182-8. PubMed ID: 16678928 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms underlying dedepression of synaptic NMDA receptors in the hippocampus. Morishita W; Malenka RC J Neurophysiol; 2008 Jan; 99(1):254-63. PubMed ID: 17989241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]