BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 11740506)

  • 1. A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p.
    Gross E; Sevier CS; Vala A; Kaiser CA; Fass D
    Nat Struct Biol; 2002 Jan; 9(1):61-7. PubMed ID: 11740506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of substrate access to the disulfide oxidase Erv2p.
    Vala A; Sevier CS; Kaiser CA
    J Mol Biol; 2005 Dec; 354(4):952-66. PubMed ID: 16288914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disulfides out of thin air.
    Collet JF; Bardwell JC
    Nat Struct Biol; 2002 Jan; 9(1):2-3. PubMed ID: 11753423
    [No Abstract]   [Full Text] [Related]  

  • 4. Gain of function in an ERV/ALR sulfhydryl oxidase by molecular engineering of the shuttle disulfide.
    Vitu E; Bentzur M; Lisowsky T; Kaiser CA; Fass D
    J Mol Biol; 2006 Sep; 362(1):89-101. PubMed ID: 16893552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast ERV2p is the first microsomal FAD-linked sulfhydryl oxidase of the Erv1p/Alrp protein family.
    Gerber J; Mühlenhoff U; Hofhaus G; Lill R; Lisowsky T
    J Biol Chem; 2001 Jun; 276(26):23486-91. PubMed ID: 11313344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide relays between and within proteins: the Ero1p structure.
    Hiniker A; Bardwell JC
    Trends Biochem Sci; 2004 Oct; 29(10):516-9. PubMed ID: 15450603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erv2p: characterization of the redox behavior of a yeast sulfhydryl oxidase.
    Wang W; Winther JR; Thorpe C
    Biochemistry; 2007 Mar; 46(11):3246-54. PubMed ID: 17298084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair.
    Hopfner KP; Craig L; Moncalian G; Zinkel RA; Usui T; Owen BA; Karcher A; Henderson B; Bodmer JL; McMurray CT; Carney JP; Petrini JH; Tainer JA
    Nature; 2002 Aug; 418(6897):562-6. PubMed ID: 12152085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase.
    Lee J; Hofhaus G; Lisowsky T
    FEBS Lett; 2000 Jul; 477(1-2):62-6. PubMed ID: 10899311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the periplasmic thiol-disulfide oxidoreductase SoxS from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation.
    Carius Y; Rother D; Friedrich CG; Scheidig AJ
    Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):229-40. PubMed ID: 19237745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation.
    Sevier CS; Cuozzo JW; Vala A; Aslund F; Kaiser CA
    Nat Cell Biol; 2001 Oct; 3(10):874-82. PubMed ID: 11584268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of amino acids at two dimer interface regions of the alpha-factor receptor (Ste2).
    Wang HX; Konopka JB
    Biochemistry; 2009 Aug; 48(30):7132-9. PubMed ID: 19588927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of NADH-dependent ferredoxin reductase component in biphenyl dioxygenase.
    Senda T; Yamada T; Sakurai N; Kubota M; Nishizaki T; Masai E; Fukuda M; Mitsuidagger Y
    J Mol Biol; 2000 Dec; 304(3):397-410. PubMed ID: 11090282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B; Labarre J; Toledano MB
    Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of yeast FAD synthetase (Fad1) in complex with FAD.
    Leulliot N; Blondeau K; Keller J; Ulryck N; Quevillon-Cheruel S; van Tilbeurgh H
    J Mol Biol; 2010 May; 398(5):641-6. PubMed ID: 20359485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homodimeric mitochondrial phosphate transport protein. Transient subunit/subunit contact site between the transport relevant transmembrane helices A.
    Phelps A; Wohlrab H
    Biochemistry; 2004 May; 43(20):6200-7. PubMed ID: 15147204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-domain redox communication in flavoenzymes of the quiescin/sulfhydryl oxidase family: role of a thioredoxin domain in disulfide bond formation.
    Raje S; Thorpe C
    Biochemistry; 2003 Apr; 42(15):4560-8. PubMed ID: 12693953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.