These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 11741035)

  • 21. [Physiological and molecular biological mechanisms of heavy metal absorption and accumulation in hyperaccumulators].
    Li W; Chen T
    Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):627-31. PubMed ID: 12920918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sub-cellular partitioning of Cd, Cu and Zn in tissues of indigenous unionid bivalves living along a metal exposure gradient and links to metal-induced effects.
    Bonneris E; Perceval O; Masson S; Hare L; Campbell PG
    Environ Pollut; 2005 May; 135(2):195-208. PubMed ID: 15734580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress.
    Sharma SS; Dietz KJ
    J Exp Bot; 2006; 57(4):711-26. PubMed ID: 16473893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals.
    Ahsan N; Renaut J; Komatsu S
    Proteomics; 2009 May; 9(10):2602-21. PubMed ID: 19405030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [H(+)-coupled heavy metal transport in plants].
    Migocka M; Nowojska E; Kłobus G
    Postepy Biochem; 2007; 53(3):272-9. PubMed ID: 18399355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vacuolar transporters and their essential role in plant metabolism.
    Martinoia E; Maeshima M; Neuhaus HE
    J Exp Bot; 2007; 58(1):83-102. PubMed ID: 17110589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical electron microscopy as a powerful tool in plant cell biology: examples using electron energy loss spectroscopy and X-ray microanalysis.
    Lichtenberger O; Neumann D
    Eur J Cell Biol; 1997 Aug; 73(4):378-86. PubMed ID: 9270881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans.
    Fritioff A; Greger M
    Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.).
    Sun Q; Wang XR; Ding SM; Yuan XF
    Environ Toxicol; 2005 Apr; 20(2):195-201. PubMed ID: 15793816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity of heavy metals and metal-containing nanoparticles on plants.
    Mustafa G; Komatsu S
    Biochim Biophys Acta; 2016 Aug; 1864(8):932-44. PubMed ID: 26940747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification.
    Egli D; Domènech J; Selvaraj A; Balamurugan K; Hua H; Capdevila M; Georgiev O; Schaffner W; Atrian S
    Genes Cells; 2006 Jun; 11(6):647-58. PubMed ID: 16716195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis.
    Taulavuori K; Prasad MN; Taulavuori E; Laine K
    Environ Pollut; 2005 May; 135(2):209-20. PubMed ID: 15734581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury.
    Bae W; Mehra RK; Mulchandani A; Chen W
    Appl Environ Microbiol; 2001 Nov; 67(11):5335-8. PubMed ID: 11679366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico.
    Figueroa JA; Wrobel K; Afton S; Caruso JA; Corona Felix Gutierrez J; Wrobel K
    Chemosphere; 2008 Feb; 70(11):2084-91. PubMed ID: 17931685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites.
    Sousa AI; Caçador I; Lillebø AI; Pardal MA
    Chemosphere; 2008 Jan; 70(5):850-7. PubMed ID: 17764720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transition metal transporters in plants.
    Hall JL; Williams LE
    J Exp Bot; 2003 Dec; 54(393):2601-13. PubMed ID: 14585824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view.
    Ernst WH; Krauss GJ; Verkleij JA; Wesenberg D
    Plant Cell Environ; 2008 Jan; 31(1):123-43. PubMed ID: 17999660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans.
    Vatamaniuk OK; Bucher EA; Ward JT; Rea PA
    J Biol Chem; 2001 Jun; 276(24):20817-20. PubMed ID: 11313333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.