These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 11741049)
1. Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress. Clifford SC; Arndt SK; Popp M; Jones HG J Exp Bot; 2002 Jan; 53(366):131-8. PubMed ID: 11741049 [TBL] [Abstract][Full Text] [Related]
2. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Arndt SK; Clifford SC; Wanek W; Jones HG; Popp M Tree Physiol; 2001 Jul; 21(11):705-15. PubMed ID: 11470656 [TBL] [Abstract][Full Text] [Related]
3. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Yang J; Zhang J; Wang Z; Zhu Q; Liu L Planta; 2002 Aug; 215(4):645-52. PubMed ID: 12172848 [TBL] [Abstract][Full Text] [Related]
4. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Porcel R; Ruiz-Lozano JM J Exp Bot; 2004 Aug; 55(403):1743-50. PubMed ID: 15208335 [TBL] [Abstract][Full Text] [Related]
6. Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought. Basu PS; Ali M; Chaturvedi SK Indian J Exp Biol; 2007 Mar; 45(3):261-7. PubMed ID: 17373371 [TBL] [Abstract][Full Text] [Related]
7. Response to dehydration and irrigation in invasive and native saplings: osmotic adjustment versus leaf shedding. Yazaki K; Sano Y; Fujikawa S; Nakano T; Ishida A Tree Physiol; 2010 May; 30(5):597-607. PubMed ID: 20368340 [TBL] [Abstract][Full Text] [Related]
8. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Merchant A; Tausz M; Arndt SK; Adams MA Plant Cell Environ; 2006 Nov; 29(11):2017-29. PubMed ID: 17081238 [TBL] [Abstract][Full Text] [Related]
9. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Mahdieh M; Mostajeran A; Horie T; Katsuhara M Plant Cell Physiol; 2008 May; 49(5):801-13. PubMed ID: 18385163 [TBL] [Abstract][Full Text] [Related]
10. Proteome response of Elymus elongatum to severe water stress and recovery. Gazanchian A; Hajheidari M; Sima NK; Salekdeh GH J Exp Bot; 2007; 58(2):291-300. PubMed ID: 17210992 [TBL] [Abstract][Full Text] [Related]
11. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). Pou A; Flexas J; Alsina Mdel M; Bota J; Carambula C; de Herralde F; Galmés J; Lovisolo C; Jiménez M; Ribas-Carbó M; Rusjan D; Secchi F; Tomàs M; Zsófi Z; Medrano H Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813 [TBL] [Abstract][Full Text] [Related]
12. Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Torres-Franklin ML; Gigon A; de Melo DF; Zuily-Fodil Y; Pham-Thi AT Physiol Plant; 2007 Oct; 131(2):201-10. PubMed ID: 18251892 [TBL] [Abstract][Full Text] [Related]
13. The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Shi L; Guttenberger M; Kottke I; Hampp R Mycorrhiza; 2002 Dec; 12(6):303-11. PubMed ID: 12466918 [TBL] [Abstract][Full Text] [Related]
14. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Xiao X; Yang F; Zhang S; Korpelainen H; Li C Physiol Plant; 2009 Jun; 136(2):150-68. PubMed ID: 19453505 [TBL] [Abstract][Full Text] [Related]
15. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Khalvati MA; Hu Y; Mozafar A; Schmidhalter U Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474 [TBL] [Abstract][Full Text] [Related]
16. Subcellular effects of drought stress in Rosmarinus officinalis. Olmos E; Sánchez-Blanco MJ; Ferrández T; Alarcón JJ Plant Biol (Stuttg); 2007 Jan; 9(1):77-84. PubMed ID: 17006799 [TBL] [Abstract][Full Text] [Related]
17. Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. Schreiner M; Beyene B; Krumbein A; Stützel H J Agric Food Chem; 2009 Aug; 57(16):7259-63. PubMed ID: 20349919 [TBL] [Abstract][Full Text] [Related]
18. Effect of acute drought stress and time of harvest on phytochemistry and dry weight of St. John's wort leaves and flowers. Gray DE; Pallardy SG; Garrett HE; Rottinghaus GE Planta Med; 2003 Nov; 69(11):1024-30. PubMed ID: 14735441 [TBL] [Abstract][Full Text] [Related]
19. Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. Kaur K; Gupta AK; Kaur N Indian J Biochem Biophys; 2007 Aug; 44(4):223-30. PubMed ID: 17970280 [TBL] [Abstract][Full Text] [Related]
20. Relationship between carbohydrate partitioning and drought resistance in common bean. Cuellar-Ortiz SM; De La Paz Arrieta-Montiel M; Acosta-Gallegos J; Covarrubias AA Plant Cell Environ; 2008 Oct; 31(10):1399-409. PubMed ID: 18643951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]