These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11741230)

  • 1. Independence of substituent contributions to the transport of small molecule permeants in lipid bilayers.
    Mayer PT; Xiang TX; Anderson BD
    AAPS PharmSci; 2000; 2(2):E14. PubMed ID: 11741230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport across 1,9-decadiene precisely mimics the chemical selectivity of the barrier domain in egg lecithin bilayers.
    Mayer PT; Anderson BD
    J Pharm Sci; 2002 Mar; 91(3):640-6. PubMed ID: 11920749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrophobicity scale for the lipid bilayer barrier domain from peptide permeabilities: nonadditivities in residue contributions.
    Mayer PT; Xiang TX; Niemi R; Anderson BD
    Biochemistry; 2003 Feb; 42(6):1624-36. PubMed ID: 12578376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substituent contributions to the transport of substituted p-toluic acids across lipid bilayer membranes.
    Xiang TX; Anderson BD
    J Pharm Sci; 1994 Oct; 83(10):1511-8. PubMed ID: 7884677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport methods for probing the barrier domain of lipid bilayer membranes.
    Xiang TX; Chen X; Anderson BD
    Biophys J; 1992 Jul; 63(1):78-88. PubMed ID: 1420875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of a transmembrane protein on the permeability of small molecules across lipid membranes.
    Xiang T; Anderson BD
    J Membr Biol; 2000 Feb; 173(3):187-201. PubMed ID: 10667915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The barrier domain for solute permeation varies with lipid bilayer phase structure.
    Xiang T; Xu Y; Anderson BD
    J Membr Biol; 1998 Sep; 165(1):77-90. PubMed ID: 9705984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between permeant size and permeability in lipid bilayer membranes.
    Xiang TX; Anderson BD
    J Membr Biol; 1994 Jun; 140(2):111-22. PubMed ID: 7932645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer simulation of functional group contributions to free energy in water and a DPPC lipid bilayer.
    Xiang TX; Anderson BD
    Biophys J; 2002 Apr; 82(4):2052-66. PubMed ID: 11916862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a combined NMR paramagnetic ion-induced line-broadening/dynamic light scattering method for permeability measurements across lipid bilayer membranes.
    Xiang TX; Anderson BD
    J Pharm Sci; 1995 Nov; 84(11):1308-15. PubMed ID: 8587048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.
    Xiang TX; Anderson BD
    Biophys J; 1997 Jan; 72(1):223-37. PubMed ID: 8994607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of intravesicular pH drift and membrane binding on the liposomal release of a model amine-containing permeant.
    Tejwani RW; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):381-99. PubMed ID: 17694543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of partitioning of phenothiazine drugs between phosphatidylcholine bilayer vesicles and water studied by second-derivative spectrophotometry.
    Takegami S; Kitamura K; Kitade T; Kitagawa A; Kawamura K
    Chem Pharm Bull (Tokyo); 2003 Sep; 51(9):1056-9. PubMed ID: 12951447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional group dependence of solute partitioning to various locations within a DOPC bilayer: a comparison of molecular dynamics simulations with experiment.
    Tejwani RW; Davis ME; Anderson BD; Stouch TR
    J Pharm Sci; 2011 Jun; 100(6):2136-46. PubMed ID: 21491439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular-dynamics study of lipid bilayers: effects of the hydrocarbon chain length on permeability.
    Sugii T; Takagi S; Matsumoto Y
    J Chem Phys; 2005 Nov; 123(18):184714. PubMed ID: 16292928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative model for the dependence of solute permeability on peptide and cholesterol content in biomembranes.
    Xiang TX; Chen J; Anderson BD
    J Membr Biol; 2000 Sep; 177(2):137-48. PubMed ID: 11003688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the glucose permeation rate across phospholipid bilayers using small unilamellar vesicles. Effect of membrane composition and temperature.
    Bresseleers GJ; Goderis HL; Tobback PP
    Biochim Biophys Acta; 1984 May; 772(3):374-82. PubMed ID: 6722152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Link between Membrane Composition and Permeability to Drugs.
    Tse CH; Comer J; Wang Y; Chipot C
    J Chem Theory Comput; 2018 Jun; 14(6):2895-2909. PubMed ID: 29771515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.