These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 11741584)
1. Asn(78) and His(81) form a destabilizing locus within the Max HLH-LZ homodimer. Tchan MC; Weiss AS FEBS Lett; 2001 Dec; 509(2):177-80. PubMed ID: 11741584 [TBL] [Abstract][Full Text] [Related]
2. Improving the thermodynamic stability of the leucine zipper of max increases the stability of its b-HLH-LZ:E-box complex. Jean-François N; Frédéric G; Raymund W; Benoit C; Lavigne P J Mol Biol; 2003 Mar; 326(5):1577-95. PubMed ID: 12595267 [TBL] [Abstract][Full Text] [Related]
3. The leucine zippers of the HLH-LZ proteins Max and c-Myc preferentially form heterodimers. Muhle-Goll C; Nilges M; Pastore A Biochemistry; 1995 Oct; 34(41):13554-64. PubMed ID: 7577944 [TBL] [Abstract][Full Text] [Related]
4. Interfacial asparagine residues within an amide tetrad contribute to Max helix-loop-helix leucine zipper homodimer stability. Tchan MC; Choy KJ; Mackay JP; Lyons AT; Bains NP; Weiss AS J Biol Chem; 2000 Dec; 275(48):37454-61. PubMed ID: 10978321 [TBL] [Abstract][Full Text] [Related]
5. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483 [TBL] [Abstract][Full Text] [Related]
6. Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max. Davis LJ; Halazonetis TD Oncogene; 1993 Jan; 8(1):125-32. PubMed ID: 8423990 [TBL] [Abstract][Full Text] [Related]
7. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. Sauvé S; Tremblay L; Lavigne P J Mol Biol; 2004 Sep; 342(3):813-32. PubMed ID: 15342239 [TBL] [Abstract][Full Text] [Related]
8. Toward the elucidation of the structural determinants responsible for the molecular recognition between Mad1 and Max. Montagne M; Naud JF; McDuff FO; Lavigne P Biochemistry; 2005 Sep; 44(38):12860-9. PubMed ID: 16171401 [TBL] [Abstract][Full Text] [Related]
9. Induction of apoptosis by the c-Myc helix-loop-helix/leucine zipper domain in mouse 3T3-L1 fibroblasts. Kohlhuber F; Hermeking H; Graessmann A; Eick D J Biol Chem; 1995 Dec; 270(48):28797-805. PubMed ID: 7499403 [TBL] [Abstract][Full Text] [Related]
10. New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. Beaulieu ME; McDuff FO; Frappier V; Montagne M; Naud JF; Lavigne P J Mol Recognit; 2012 Jul; 25(7):414-26. PubMed ID: 22733550 [TBL] [Abstract][Full Text] [Related]
11. Gene-regulatory properties of Myc helix-loop-helix/leucine zipper mutants: Max-dependent DNA binding and transcriptional activation in yeast correlates with transforming capacity. Crouch DH; Fisher F; Clark W; Jayaraman PS; Goding CR; Gillespie DA Oncogene; 1993 Jul; 8(7):1849-55. PubMed ID: 8510929 [TBL] [Abstract][Full Text] [Related]
12. Preferential heterodimeric parallel coiled-coil formation by synthetic Max and c-Myc leucine zippers: a description of putative electrostatic interactions responsible for the specificity of heterodimerization. Lavigne P; Kondejewski LH; Houston ME; Sönnichsen FD; Lix B; Skyes BD; Hodges RS; Kay CM J Mol Biol; 1995 Dec; 254(3):505-20. PubMed ID: 7490766 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the Myc and Max interaction specificity with lambda repressor-HLH domain fusions. Marchetti A; Abril-Marti M; Illi B; Cesareni G; Nasi S J Mol Biol; 1995 May; 248(3):541-50. PubMed ID: 7752223 [TBL] [Abstract][Full Text] [Related]
14. Mutational analysis of Max: role of basic, helix-loop-helix/leucine zipper domains in DNA binding, dimerization and regulation of Myc-mediated transcriptional activation. Reddy CD; Dasgupta P; Saikumar P; Dudek H; Rauscher FJ; Reddy EP Oncogene; 1992 Oct; 7(10):2085-92. PubMed ID: 1408152 [TBL] [Abstract][Full Text] [Related]
15. Viral mutations enhance the Max binding properties of the vMyc b-HLH-LZ domain. Crouch DH; Fisher F; La Rocca SA; Goding CR; Gillespie DA Nucleic Acids Res; 2005; 33(16):5235-42. PubMed ID: 16166655 [TBL] [Abstract][Full Text] [Related]
16. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif. Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024 [TBL] [Abstract][Full Text] [Related]
17. The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control. Brownlie P; Ceska T; Lamers M; Romier C; Stier G; Teo H; Suck D Structure; 1997 Apr; 5(4):509-20. PubMed ID: 9115440 [TBL] [Abstract][Full Text] [Related]
18. Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc. Gupta K; Anand G; Yin X; Grove L; Prochownik EV Oncogene; 1998 Mar; 16(9):1149-59. PubMed ID: 9528857 [TBL] [Abstract][Full Text] [Related]
19. Determination of sequences responsible for the differential regulation of Myc function by delta Max and Max. Västrik I; Mäkelä TP; Koskinen PJ; Alitalo K Oncogene; 1995 Aug; 11(3):553-60. PubMed ID: 7630640 [TBL] [Abstract][Full Text] [Related]
20. Oncogenic activity of the c-Myc protein requires dimerization with Max. Amati B; Brooks MW; Levy N; Littlewood TD; Evan GI; Land H Cell; 1993 Jan; 72(2):233-45. PubMed ID: 8425220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]