BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11742007)

  • 1. Identification of the active site of poly(A)-specific ribonuclease by site-directed mutagenesis and Fe(2+)-mediated cleavage.
    Ren YG; Martínez J; Virtanen A
    J Biol Chem; 2002 Feb; 277(8):5982-7. PubMed ID: 11742007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination of divalent metal ions in the active site of poly(A)-specific ribonuclease.
    Ren YG; Kirsebom LA; Virtanen A
    J Biol Chem; 2004 Nov; 279(47):48702-6. PubMed ID: 15358788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissimilar roles of the four conserved acidic residues in the thermal stability of poly(A)-specific ribonuclease.
    He GJ; Liu WF; Yan YB
    Int J Mol Sci; 2011; 12(5):2901-16. PubMed ID: 21686157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of adenosine residues by the active site of poly(A)-specific ribonuclease.
    Henriksson N; Nilsson P; Wu M; Song H; Virtanen A
    J Biol Chem; 2010 Jan; 285(1):163-70. PubMed ID: 19901024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase.
    Virtanen A; Henriksson N; Nilsson P; Nissbeck M
    Crit Rev Biochem Mol Biol; 2013; 48(2):192-209. PubMed ID: 23496118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multifunctional RNA recognition motif in poly(A)-specific ribonuclease with cap and poly(A) binding properties.
    Nilsson P; Henriksson N; Niedzwiecka A; Balatsos NA; Kokkoris K; Eriksson J; Virtanen A
    J Biol Chem; 2007 Nov; 282(45):32902-11. PubMed ID: 17785461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of aspartic acid 121 in human pancreatic ribonuclease catalysis.
    Gaur D; Batra JK
    Mol Cell Biochem; 2005 Jul; 275(1-2):95-101. PubMed ID: 16335788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of conserved aspartates, glutamates and arginines in the active site region of Escherichia coli DNA topoisomerase I.
    Zhu CX; Roche CJ; Papanicolaou N; DiPietrantonio A; Tse-Dinh YC
    J Biol Chem; 1998 Apr; 273(15):8783-9. PubMed ID: 9535856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of m(7)GpppG binding to poly(A)-specific ribonuclease.
    Wu M; Nilsson P; Henriksson N; Niedzwiecka A; Lim MK; Cheng Z; Kokkoris K; Virtanen A; Song H
    Structure; 2009 Feb; 17(2):276-86. PubMed ID: 19217398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive inhibition of human poly(A)-specific ribonuclease (PARN) by synthetic fluoro-pyranosyl nucleosides.
    Balatsos NA; Vlachakis D; Maragozidis P; Manta S; Anastasakis D; Kyritsis A; Vlassi M; Komiotis D; Stathopoulos C
    Biochemistry; 2009 Jul; 48(26):6044-51. PubMed ID: 19472977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation by site-directed mutagenesis of aspartic acid residues in the metal site of pig heart NADP-dependent isocitrate dehydrogenase.
    Grodsky NB; Soundar S; Colman RF
    Biochemistry; 2000 Mar; 39(9):2193-200. PubMed ID: 10694384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insight into poly(A) binding and catalytic mechanism of human PARN.
    Wu M; Reuter M; Lilie H; Liu Y; Wahle E; Song H
    EMBO J; 2005 Dec; 24(23):4082-93. PubMed ID: 16281054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles of the R3H and RRM domains in poly(A)-specific ribonuclease structural integrity and catalysis.
    He GJ; Zhang A; Liu WF; Yan YB
    Biochim Biophys Acta; 2013 Jun; 1834(6):1089-98. PubMed ID: 23388391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Klenow DNA polymerase and poly(A)-specific ribonuclease by aminoglycosides.
    Ren YG; Martínez J; Kirsebom LA; Virtanen A
    RNA; 2002 Nov; 8(11):1393-400. PubMed ID: 12458793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Dec; 277(51):50155-9. PubMed ID: 12364334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular recognition of mRNA 5' cap by 3' poly(A)-specific ribonuclease (PARN) differs from interactions known for other cap-binding proteins.
    Niedzwiecka A; Nilsson P; Worch R; Stepinski J; Darzynkiewicz E; Virtanen A
    Biochim Biophys Acta; 2016 Apr; 1864(4):331-45. PubMed ID: 26772900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of four acidic amino acids that constitute the catalytic center of the RuvC Holliday junction resolvase.
    Saito A; Iwasaki H; Ariyoshi M; Morikawa K; Shinagawa H
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7470-4. PubMed ID: 7638215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric regulation of human poly(A)-specific ribonuclease by cap and potassium ions.
    Liu WF; Zhang A; Cheng Y; Zhou HM; Yan YB
    Biochem Biophys Res Commun; 2009 Feb; 379(2):341-5. PubMed ID: 19103158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RRM domain of poly(A)-specific ribonuclease has a noncanonical binding site for mRNA cap analog recognition.
    Nagata T; Suzuki S; Endo R; Shirouzu M; Terada T; Inoue M; Kigawa T; Kobayashi N; Güntert P; Tanaka A; Hayashizaki Y; Muto Y; Yokoyama S
    Nucleic Acids Res; 2008 Aug; 36(14):4754-67. PubMed ID: 18641416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.