These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11742007)

  • 21. Crystal structure of the RRM domain of poly(A)-specific ribonuclease reveals a novel m(7)G-cap-binding mode.
    Monecke T; Schell S; Dickmanns A; Ficner R
    J Mol Biol; 2008 Oct; 382(4):827-34. PubMed ID: 18694759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of residues in the Mu transposase essential for catalysis.
    Baker TA; Luo L
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6654-8. PubMed ID: 7912831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.
    Nakanishi Y; Saijo T; Wada Y; Maeshima M
    J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-directed mutagenesis of the calcium-binding site of blood coagulation factor XIIIa.
    Lai TS; Slaughter TF; Peoples KA; Greenberg CS
    J Biol Chem; 1999 Aug; 274(35):24953-8. PubMed ID: 10455172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D; Harrison DH
    Biochemistry; 1998 Jul; 37(28):10074-86. PubMed ID: 9665712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity.
    Barzilay G; Walker LJ; Robson CN; Hickson ID
    Nucleic Acids Res; 1995 May; 23(9):1544-50. PubMed ID: 7784208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME".
    Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM
    J Biol Chem; 2009 Jul; 284(31):20486-98. PubMed ID: 19458082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe.
    Biswas R; Ledman DW; Fox RO; Altman S; Gopalan V
    J Mol Biol; 2000 Feb; 296(1):19-31. PubMed ID: 10656815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis.
    Haruki M; Noguchi E; Nakai C; Liu YY; Oobatake M; Itaya M; Kanaya S
    Eur J Biochem; 1994 Mar; 220(2):623-31. PubMed ID: 8125123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-directed mutagenesis of essential residues involved in the mechanism of bacterial glycosylasparaginase.
    Liu Y; Guan C; Aronson NN
    J Biol Chem; 1998 Apr; 273(16):9688-94. PubMed ID: 9545303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deoxyhypusine hydroxylase is a Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis [corrected].
    Kim YS; Kang KR; Wolff EC; Bell JK; McPhie P; Park MH
    J Biol Chem; 2006 May; 281(19):13217-13225. PubMed ID: 16533814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the RRM domain in the activity, structure and stability of poly(A)-specific ribonuclease.
    Zhang A; Liu WF; Yan YB
    Arch Biochem Biophys; 2007 May; 461(2):255-62. PubMed ID: 17391638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical analysis of point mutations in the 5'-3' exonuclease of DNA polymerase I of Streptococcus pneumoniae. Functional and structural implications.
    Amblar M; de Lacoba MG; Corrales MA; Lopez P
    J Biol Chem; 2001 Jun; 276(22):19172-81. PubMed ID: 11278428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis.
    Fang HM; Wang Y
    Biochem J; 2002 Dec; 368(Pt 2):641-7. PubMed ID: 12207560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of human poly(A)-specific ribonuclease (PARN) by purine nucleotides: kinetic analysis.
    Balatsos NA; Anastasakis D; Stathopoulos C
    J Enzyme Inhib Med Chem; 2009 Apr; 24(2):516-23. PubMed ID: 18763168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic and in silico analysis of the slow-binding inhibition of human poly(A)-specific ribonuclease (PARN) by novel nucleoside analogues.
    Balatsos N; Vlachakis D; Chatzigeorgiou V; Manta S; Komiotis D; Vlassi M; Stathopoulos C
    Biochimie; 2012 Jan; 94(1):214-21. PubMed ID: 22041582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding.
    Harlow LS; Kadziola A; Jensen KF; Larsen S
    Protein Sci; 2004 Mar; 13(3):668-77. PubMed ID: 14767080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translation Efficiency and Degradation of ER-Associated mRNAs Modulated by ER-Anchored poly(A)-Specific Ribonuclease (PARN).
    Duan TL; Jiao H; He GJ; Yan YB
    Cells; 2020 Jan; 9(1):. PubMed ID: 31936572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.