These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11742069)

  • 1. Role of the C-terminal domain in inactivation of brain and cardiac sodium channels.
    Mantegazza M; Yu FH; Catterall WA; Scheuer T
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15348-53. PubMed ID: 11742069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-dependent cocaine block of sodium channel isoforms, chimeras, and channels coexpressed with the beta1 subunit.
    Wright SN; Wang SY; Xiao YF; Wang GK
    Biophys J; 1999 Jan; 76(1 Pt 1):233-45. PubMed ID: 9876137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A1152D mutation of the Na+ channel causes paramyotonia congenita and emphasizes the role of DIII/S4-S5 linker in fast inactivation.
    Bouhours M; Luce S; Sternberg D; Willer JC; Fontaine B; Tabti N
    J Physiol; 2005 Jun; 565(Pt 2):415-27. PubMed ID: 15790667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implication of the C-terminal region of the alpha-subunit of voltage-gated sodium channels in fast inactivation.
    Deschênes I; Trottier E; Chahine M
    J Membr Biol; 2001 Sep; 183(2):103-14. PubMed ID: 11562792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation.
    Vilin YY; Fujimoto E; Ruben PC
    Biophys J; 2001 May; 80(5):2221-30. PubMed ID: 11325725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan substitution of a putative D4S6 gating hinge alters slow inactivation in cardiac sodium channels.
    Wang SY; Russell C; Wang GK
    Biophys J; 2005 Jun; 88(6):3991-9. PubMed ID: 15805167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the amino and carboxy termini in isoform-specific sodium channel variation.
    Lee A; Goldin AL
    J Physiol; 2008 Aug; 586(16):3917-26. PubMed ID: 18565993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating.
    Wehrens XH; Rossenbacker T; Jongbloed RJ; Gewillig M; Heidbüchel H; Doevendans PA; Vos MA; Wellens HJ; Kass RS
    Hum Mutat; 2003 May; 21(5):552. PubMed ID: 12673799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of S1505 in the cardiac Na+ channel inactivation gate is required for modulation by protein kinase C.
    Qu Y; Rogers JC; Tanada TN; Catterall WA; Scheuer T
    J Gen Physiol; 1996 Nov; 108(5):375-9. PubMed ID: 8923263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative charges in the DIII-DIV linker of human skeletal muscle Na+ channels regulate deactivation gating.
    Groome JR; Fujimoto E; Ruben PC
    J Physiol; 2003 Apr; 548(Pt 1):85-96. PubMed ID: 12588896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional role of the C-terminus of voltage-gated sodium channel Na(v)1.8.
    Choi JS; Tyrrell L; Waxman SG; Dib-Hajj SD
    FEBS Lett; 2004 Aug; 572(1-3):256-60. PubMed ID: 15304358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel voltage-gated Na+ channel rNa(v)1.5a in the rat hippocampal progenitor stem cell line HiB5.
    Gersdorff Korsgaard MP; Christophersen P; Ahring PK; Olesen SP
    Pflugers Arch; 2001 Oct; 443(1):18-30. PubMed ID: 11692262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of lacosamide and classical sodium channel blocking antiepileptic drugs on sodium channel slow inactivation.
    Niespodziany I; Leclère N; Vandenplas C; Foerch P; Wolff C
    J Neurosci Res; 2013 Mar; 91(3):436-43. PubMed ID: 23239147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different effects on gating of three myotonia-causing mutations in the inactivation gate of the human muscle sodium channel.
    Mitrović N; George AL; Lerche H; Wagner S; Fahlke C; Lehmann-Horn F
    J Physiol; 1995 Aug; 487(1):107-14. PubMed ID: 7473241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature on slow and fast inactivation of rat skeletal muscle Na(+) channels.
    Ruff RL
    Am J Physiol; 1999 Nov; 277(5):C937-47. PubMed ID: 10564086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of channel cytoplasmic regions on the activation mechanisms of cardiac versus skeletal muscle Na(+) channels.
    Bennett ES
    Biophys J; 1999 Dec; 77(6):2999-3009. PubMed ID: 10585922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role in fast inactivation of the IV/S4-S5 loop of the human muscle Na+ channel probed by cysteine mutagenesis.
    Lerche H; Peter W; Fleischhauer R; Pika-Hartlaub U; Malina T; Mitrovic N; Lehmann-Horn F
    J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):345-52. PubMed ID: 9423178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium channel carboxyl-terminal residue regulates fast inactivation.
    Nguyen HM; Goldin AL
    J Biol Chem; 2010 Mar; 285(12):9077-89. PubMed ID: 20089854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent trapping of flecainide in the cardiac sodium channel.
    Ramos E; O'leary ME
    J Physiol; 2004 Oct; 560(Pt 1):37-49. PubMed ID: 15272045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans.
    Bouhours M; Sternberg D; Davoine CS; Ferrer X; Willer JC; Fontaine B; Tabti N
    J Physiol; 2004 Feb; 554(Pt 3):635-47. PubMed ID: 14617673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.