These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11742109)

  • 21. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural plasticity of 4-α-helical bundles exemplified by the puzzle-like molecular assembly of the Rop protein.
    Amprazi M; Kotsifaki D; Providaki M; Kapetaniou EG; Fellas G; Kyriazidis I; Pérez J; Kokkinidis M
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):11049-54. PubMed ID: 25024213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Motifs. 7. The four-helix bundle: what determines a fold?
    Kamtekar S; Hecht MH
    FASEB J; 1995 Aug; 9(11):1013-22. PubMed ID: 7649401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribosome-associated factor Y adopts a fold resembling a double-stranded RNA binding domain scaffold.
    Ye K; Serganov A; Hu W; Garber M; Patel DJ
    Eur J Biochem; 2002 Nov; 269(21):5182-91. PubMed ID: 12392550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disulfide crosslinks to probe the structure and flexibility of a designed four-helix bundle protein.
    Regan L; Rockwell A; Wasserman Z; DeGrado W
    Protein Sci; 1994 Dec; 3(12):2419-27. PubMed ID: 7756995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic and structural analysis of the ColE1 Rop (Rom) protein.
    Castagnoli L; Scarpa M; Kokkinidis M; Banner DW; Tsernoglou D; Cesareni G
    EMBO J; 1989 Feb; 8(2):621-9. PubMed ID: 2721494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of a tmRNA-binding protein, SmpB, from Thermus thermophilus.
    Someya T; Nameki N; Hosoi H; Suzuki S; Hatanaka H; Fujii M; Terada T; Shirouzu M; Inoue Y; Shibata T; Kuramitsu S; Yokoyama S; Kawai G
    FEBS Lett; 2003 Jan; 535(1-3):94-100. PubMed ID: 12560085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional solution structure and backbone dynamics of a variant of human interleukin-3.
    Feng Y; Klein BK; McWherter CA
    J Mol Biol; 1996 Jun; 259(3):524-41. PubMed ID: 8676386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cysteine-free Rop: a four-helix bundle core mutant has wild-type stability and structure but dramatically different unfolding kinetics.
    Hari SB; Byeon C; Lavinder JJ; Magliery TJ
    Protein Sci; 2010 Apr; 19(4):670-9. PubMed ID: 20095056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SymROP: ROP protein with identical helices redesigned by all-atom contact analysis and molecular dynamics.
    Grell D; Richardson JS; Richardson DC; Mutter M
    J Mol Graph Model; 2000 Jun; 18(3):290-8, 309-10. PubMed ID: 11021545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonance assignments of wild-type and two cysteine-free variants of the four-helix bundle protein, Rop.
    Bowles DP; Yuan C; Stephany KR; Lavinder JJ; Hansen AL; Magliery TJ
    Biomol NMR Assign; 2018 Oct; 12(2):345-350. PubMed ID: 30159810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An antiparallel four-helix bundle orients the high-affinity RNA binding sites in hnRNP C: a mechanism for RNA chaperonin activity.
    Shahied L; Braswell EH; LeStourgeon WM; Krezel AM
    J Mol Biol; 2001 Jan; 305(4):817-28. PubMed ID: 11162094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slow unfolding and refolding kinetics of the mesophilic Rop wild-type protein in the transition range.
    Rosengarth A; Rösgen J; Hinz HJ
    Eur J Biochem; 1999 Sep; 264(3):989-95. PubMed ID: 10491149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein alchemy: changing beta-sheet into alpha-helix.
    Dalal S; Balasubramanian S; Regan L
    Nat Struct Biol; 1997 Jul; 4(7):548-52. PubMed ID: 9228947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using loop length variants to dissect the folding pathway of a four-helix-bundle protein.
    Nagi AD; Anderson KS; Regan L
    J Mol Biol; 1999 Feb; 286(1):257-65. PubMed ID: 9931264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The extended left-handed helix: a simple nucleic acid-binding motif.
    Hicks JM; Hsu VL
    Proteins; 2004 May; 55(2):330-8. PubMed ID: 15048824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold.
    Bycroft M; Hubbard TJ; Proctor M; Freund SM; Murzin AG
    Cell; 1997 Jan; 88(2):235-42. PubMed ID: 9008164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton nuclear magnetic resonance assignments and secondary structure determination of the ColE1 rop (rom) protein.
    Eberle W; Klaus W; Cesareni G; Sander C; Rösch P
    Biochemistry; 1990 Aug; 29(32):7402-7. PubMed ID: 2223771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational de novo design of a four-helix bundle protein--DND_4HB.
    Murphy GS; Sathyamoorthy B; Der BS; Machius MC; Pulavarti SV; Szyperski T; Kuhlman B
    Protein Sci; 2015 Apr; 24(4):434-45. PubMed ID: 25287625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the bacterial conjugation repressor finO.
    Ghetu AF; Gubbins MJ; Frost LS; Glover JN
    Nat Struct Biol; 2000 Jul; 7(7):565-9. PubMed ID: 10876242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.