BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11742458)

  • 1. The potential role of the osteoblast in the development of periprosthetic osteolysis: review of in vitro osteoblast responses to wear debris, corrosion products, and cytokines and growth factors.
    Vermes C; Glant TT; Hallab NJ; Fritz EA; Roebuck KA; Jacobs JJ
    J Arthroplasty; 2001 Dec; 16(8 Suppl 1):95-100. PubMed ID: 11742458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts.
    Vermes C; Chandrasekaran R; Jacobs JJ; Galante JO; Roebuck KA; Glant TT
    J Bone Joint Surg Am; 2001 Feb; 83(2):201-11. PubMed ID: 11216681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal implant debris-induced osteolysis.
    Hallab NJ; Cunningham BW; Jacobs JJ
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S125-38. PubMed ID: 14560184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periprosthetic osteolysis: genetics, mechanisms and potential therapeutic interventions.
    Noordin S; Masri B
    Can J Surg; 2012 Dec; 55(6):408-17. PubMed ID: 22992398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research progress on wear particles and periprosthetic osteolysis after artificial joint replacement].
    Jiang YJ; Wu LG
    Zhongguo Gu Shang; 2016 Oct; 29(10):968-972. PubMed ID: 29285918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris.
    Jiang Y; Jia T; Wooley PH; Yang SY
    Acta Orthop Belg; 2013 Feb; 79(1):1-9. PubMed ID: 23547507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of macrophages in the biological reaction to wear debris from joint replacements.
    Nich C; Goodman SB
    J Long Term Eff Med Implants; 2014; 24(4):259-65. PubMed ID: 25747029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of osteoblasts in peri-prosthetic osteolysis.
    O'Neill SC; Queally JM; Devitt BM; Doran PP; O'Byrne JM
    Bone Joint J; 2013 Aug; 95-B(8):1022-6. PubMed ID: 23908414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ultra-high molecular weight polyethylene wear debris on MG63 osteosarcoma cells in vitro.
    Dean DD; Schwartz Z; Liu Y; Blanchard CR; Agrawal CM; Mabrey JD; Sylvia VL; Lohmann CH; Boyan BD
    J Bone Joint Surg Am; 1999 Apr; 81(4):452-61. PubMed ID: 10225790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wear particles of total joint replacements and their role in periprosthetic osteolysis.
    Jasty M; Smith E
    Curr Opin Rheumatol; 1992 Apr; 4(2):204-9. PubMed ID: 1581149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biology of alternative bearing surfaces in total joint arthroplasty.
    Meneghini RM; Hallab NJ; Jacobs JJ
    Instr Course Lect; 2005; 54():481-93. PubMed ID: 15948473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are biologic treatments a potential approach to wear- and corrosion-related problems?
    Smith RL; Schwarz EM
    Clin Orthop Relat Res; 2014 Dec; 472(12):3740-6. PubMed ID: 24993143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts.
    Vermes C; Roebuck KA; Chandrasekaran R; Dobai JG; Jacobs JJ; Glant TT
    J Bone Miner Res; 2000 Sep; 15(9):1756-65. PubMed ID: 10976995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wear debris inhibition of anti-osteoclastogenic signaling by interleukin-6 and interferon-gamma. Mechanistic insights and implications for periprosthetic osteolysis.
    Rakshit DS; Ly K; Sengupta TK; Nestor BJ; Sculco TP; Ivashkiv LB; Purdue PE
    J Bone Joint Surg Am; 2006 Apr; 88(4):788-99. PubMed ID: 16595469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternate bearing surfaces in total joint arthroplasty: biologic considerations.
    Archibeck MJ; Jacobs JJ; Black J
    Clin Orthop Relat Res; 2000 Oct; (379):12-21. PubMed ID: 11039787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologic Responses to Orthopedic Implants: Innate and Adaptive Immune Responses to Implant Debris.
    Hallab NJ
    Spine (Phila Pa 1976); 2016 Apr; 41 Suppl 7():S30-1. PubMed ID: 27015070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wear-induced osteolysis and synovial swelling in a patient with a metal-polyethylene wrist prosthesis.
    Groot D; Gosens T; Leeuwen NC; Rhee MV; Teepen HJ
    J Hand Surg Am; 2006 Dec; 31(10):1615-8. PubMed ID: 17145381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular chemotaxis induced by wear particles from joint replacements.
    Goodman SB; Ma T
    Biomaterials; 2010 Jul; 31(19):5045-50. PubMed ID: 20398931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle bioreactivity and wear-mediated osteolysis.
    Wang ML; Sharkey PF; Tuan RS
    J Arthroplasty; 2004 Dec; 19(8):1028-38. PubMed ID: 15586339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal ions as inflammatory initiators of osteolysis.
    Magone K; Luckenbill D; Goswami T
    Arch Orthop Trauma Surg; 2015 May; 135(5):683-95. PubMed ID: 25795427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.