These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11742545)

  • 1. Multilocus nested haplotype networks extended with DNA fingerprints show common origin and fine-scale, ongoing genetic divergence in a wild microbial metapopulation.
    Carbone I; Kohn LM
    Mol Ecol; 2001 Oct; 10(10):2409-22. PubMed ID: 11742545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microbial population-species interface: nested cladistic and coalescent inference with multilocus data.
    Carbone I; Kohn LM
    Mol Ecol; 2001 Apr; 10(4):947-64. PubMed ID: 11348503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Variation of Sclerotinia sclerotiorum from Multiple Crops in the North Central United States.
    Aldrich-Wolfe L; Travers S; Nelson BD
    PLoS One; 2015; 10(9):e0139188. PubMed ID: 26417989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation and population differentiation in the lichen-forming ascomycete Xanthoria parietina on the island Storfosna, central Norway.
    Lindblom L; Ekman S
    Mol Ecol; 2006 May; 15(6):1545-59. PubMed ID: 16629810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PATTERNS OF DESCENT IN CLONAL LINEAGES AND THEIR MULTILOCUS FINGERPRINTS ARE RESOLVED WITH COMBINED GENE GENEALOGIES.
    Carbone I; Anderson JB; Kohn LM
    Evolution; 1999 Feb; 53(1):11-21. PubMed ID: 28565180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeography and Genotype-Symptom Associations in Early and Late Season Infections of Canola by Sclerotinia sclerotiorum.
    Phillips DV; Carbone I; Gold SE; Kohn LM
    Phytopathology; 2002 Jul; 92(7):785-93. PubMed ID: 18943276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population Structure of
    Clarkson JP; Warmington RJ; Walley PG; Denton-Giles M; Barbetti MJ; Brodal G; Nordskog B
    Front Microbiol; 2017; 8():490. PubMed ID: 28421039
    [No Abstract]   [Full Text] [Related]  

  • 8. Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species.
    Grünig CR; McDonald BA; Sieber TN; Rogers SO; Holdenrieder O
    Fungal Genet Biol; 2004 Jul; 41(7):676-87. PubMed ID: 15275663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields.
    Sexton AC; Howlett BJ
    Curr Genet; 2004 Dec; 46(6):357-65. PubMed ID: 15549318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population genetic structure of the seed pathogen Pyrenophora semeniperda on Bromus tectorum in western North America.
    Boose D; Harrison S; Clement S; Meyer S
    Mycologia; 2011; 103(1):85-93. PubMed ID: 20943557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic structure of Sclerotinia sclerotiorum populations from sunflower and cabbage in West Azarbaijan province of Iran.
    Faraghati M; Abrinbana M; Ghosta Y
    Sci Rep; 2022 Jun; 12(1):9263. PubMed ID: 35662267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marker stability throughout 400 days of in vitro hyphal growth in the filamentous ascomycete, Sclerotinia sclerotiorum.
    Kohn LM; Schaffer MR; Anderson JB; Grünwald NJ
    Fungal Genet Biol; 2008 May; 45(5):613-7. PubMed ID: 17996469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro- and macrogeographical genetic structure of colonies of naked mole-rats Heterocephalus glaber.
    Faulkes CG; Abbott DH; O'Brien HP; Lau L; Roy MR; Wayne RK; Bruford MW
    Mol Ecol; 1997 Jul; 6(7):615-28. PubMed ID: 9226945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random association among alleles in clonal populations of Sclerotinia sclerotiorum.
    Kohli Y; Kohn LM
    Fungal Genet Biol; 1998 Mar; 23(2):139-49. PubMed ID: 9578627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring outcrossing in the homothallic fungus Sclerotinia sclerotiorum using linkage disequilibrium decay.
    Attanayake RN; Tennekoon V; Johnson DA; Porter LD; del Río-Mendoza L; Jiang D; Chen W
    Heredity (Edinb); 2014 Oct; 113(4):353-63. PubMed ID: 24781807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Sclerotinia sclerotiorum strains variability in Brazil.
    Abreu MJ; Souza EA
    Genet Mol Res; 2015 Jun; 14(2):6879-96. PubMed ID: 26125896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linked vs unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression.
    Koopman WJ; Li Y; Coart E; van de Weg WE; Vosman B; Roldán-Ruiz I; Smulders MJ
    Mol Ecol; 2007 Jan; 16(2):243-56. PubMed ID: 17217342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of microsatellite markers of the fungal plant pathogen Sclerotinia trifoliorum.
    Njambere EN; Vandemark G; Chen W
    Genome; 2010 Jun; 53(6):494-500. PubMed ID: 20555438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host selectivity and genetic variation of Discula umbrinella isolates from two oak species: analyses of intergenic spacer region sequences of ribosomal DNA.
    Cohen SD
    Microb Ecol; 2006 Oct; 52(3):463-9. PubMed ID: 16909350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of Cryphonectria parasitica populations from the Carpathian Basin.
    Görcsös G; Irinyi L; Radócz L; Tarcali G; Sándor E
    Acta Microbiol Immunol Hung; 2015 Sep; 62(3):247-66. PubMed ID: 26551568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.