These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11742673)

  • 1. Novel peptide-based biomaterial scaffolds for tissue engineering.
    Holmes TC
    Trends Biotechnol; 2002 Jan; 20(1):16-21. PubMed ID: 11742673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period.
    Holy CE; Shoichet MS; Davies JE
    J Biomed Mater Res; 2000 Sep; 51(3):376-82. PubMed ID: 10880079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone tissue engineering.
    Healy KE; Guldberg RE
    J Musculoskelet Neuronal Interact; 2007; 7(4):328-30. PubMed ID: 18094496
    [No Abstract]   [Full Text] [Related]  

  • 4. Skeletal tissue engineering: opportunities and challenges.
    Luyten FP; Dell'Accio F; De Bari C
    Best Pract Res Clin Rheumatol; 2001 Dec; 15(5):759-69. PubMed ID: 11812020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The engineering of craniofacial tissues in the laboratory: a review of biomaterials for scaffolds and implant coatings.
    Abukawa H; Papadaki M; Abulikemu M; Leaf J; Vacanti JP; Kaban LB; Troulis MJ
    Dent Clin North Am; 2006 Apr; 50(2):205-16, viii. PubMed ID: 16530058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive peptide-modified biomaterials for bone regeneration.
    Lee JY; Choi YS; Lee SJ; Chung CP; Park YJ
    Curr Pharm Des; 2011; 17(25):2663-76. PubMed ID: 21728982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering.
    Narayanan KB; Han SS
    Enzyme Microb Technol; 2022 Apr; 155():109990. PubMed ID: 35030384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomatrices for bladder reconstruction.
    Lin HK; Madihally SV; Palmer B; Frimberger D; Fung KM; Kropp BP
    Adv Drug Deliv Rev; 2015 Mar; 82-83():47-63. PubMed ID: 25477305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterial scaffolds in pediatric tissue engineering.
    Patel M; Fisher JP
    Pediatr Res; 2008 May; 63(5):497-501. PubMed ID: 18427294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances and current developments in tissue scaffolding.
    Yarlagadda PK; Chandrasekharan M; Shyan JY
    Biomed Mater Eng; 2005; 15(3):159-77. PubMed ID: 15911997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.
    Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ
    Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7].
    Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Pre-vascularized Scaffolds for Bone Regeneration.
    Barabaschi GD; Manoharan V; Li Q; Bertassoni LE
    Adv Exp Med Biol; 2015; 881():79-94. PubMed ID: 26545745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. About recent developments of synthetic polymers for a suitable cell adhesion/growth support in tissue engineering-based either augmentation cystoplasty or neobladder.
    Alberti C
    Ann Ital Chir; 2014; 85(4):309-16. PubMed ID: 25392868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering.
    He B; Yuan X; Zhou A; Zhang H; Jiang D
    Expert Rev Mol Med; 2014 Aug; 16():e12. PubMed ID: 25089851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designer self-assembling peptide scaffolds for 3-d tissue cell cultures and regenerative medicine.
    Gelain F; Horii A; Zhang S
    Macromol Biosci; 2007 May; 7(5):544-51. PubMed ID: 17477441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering.
    Järvinen E; Muhonen V; Haaparanta AM; Kellomäki M; Kiviranta I
    Biomed Mater Eng; 2014; 24(3):1549-53. PubMed ID: 24840193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.
    Shimizu K; Ito A; Honda H
    J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.