These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11742740)

  • 1. Fabrication of a capillary immunosensor in polymethyl methacrylate.
    Holt DB; Gauger PR; Kusterbeck AW; Ligler FS
    Biosens Bioelectron; 2002 Jan; 17(1-2):95-103. PubMed ID: 11742740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace level detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by microimmunosensor.
    Charles PT; Kusterbeck AW
    Biosens Bioelectron; 1999 Apr; 14(4):387-96. PubMed ID: 10422240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multianalyte detection using a capillary-based flow immunosensor.
    Narang U; Gauger PR; Kusterbeck AW; Ligler FS
    Anal Biochem; 1998 Jan; 255(1):13-9. PubMed ID: 9448837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence-based sensing of 2,4,6-trinitrotoluene (TNT) using a multi-channeled poly(methyl methacrylate) (PMMA) microimmunosensor.
    Charles PT; Adams AA; Howell PB; Trammell SA; Deschamps JR; Kusterbeck AW
    Sensors (Basel); 2010; 10(1):876-89. PubMed ID: 22315573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor.
    Eberly JO; Mayo ML; Carr MR; Crocker FH; Indest KJ
    J Gen Appl Microbiol; 2019 Jul; 65(3):145-150. PubMed ID: 30700648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-aerosol detection of explosives with a continuous flow immunosensor.
    Shriver-Lake LC; Charles PT; Kusterbeck AW
    Anal Bioanal Chem; 2003 Oct; 377(3):550-5. PubMed ID: 12920500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trace detection of explosives using a membrane-based displacement immunoassay.
    Rabbany SY; Lane WJ; Marganski WA; Kusterbeck AW; Ligler FS
    J Immunol Methods; 2000 Dec; 246(1-2):69-77. PubMed ID: 11121548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free attomolar protein detection using a MEMS optical interferometric surface-stress immunosensor with a freestanding PMMA/parylene-C nanosheet.
    Choi YJ; Takahashi T; Taki M; Sawada K; Takahashi K
    Biosens Bioelectron; 2021 Jan; 172():112778. PubMed ID: 33157412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125.
    Dai Z; Yan F; Chen J; Ju H
    Anal Chem; 2003 Oct; 75(20):5429-34. PubMed ID: 14710822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace level analysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its biodegradation intermediates in liquid media by solid-phase extraction and high-pressure liquid chromatography analysis.
    Chow TM; Wilcoxon MR; Piwoni MD; Adrian NR
    J Chromatogr Sci; 2004 Oct; 42(9):470-3. PubMed ID: 15693186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed antibody immobilization techniques for immunosensors.
    Makaraviciute A; Ramanaviciene A
    Biosens Bioelectron; 2013 Dec; 50():460-71. PubMed ID: 23911661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Optical oxygen sensor based on a sol-gel encapsulation method].
    Ran L; Lü T; Xiang S
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2003 Apr; 34(2):337-40. PubMed ID: 12947733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated groundwater.
    Beller HR; Tiemeier K
    Environ Sci Technol; 2002 May; 36(9):2060-6. PubMed ID: 12026993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electrochemical behaviour of ferrocene in a photocurable poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) film for a glucose biosensor.
    Bean LS; Heng LY; Yamin BM; Ahmad M
    Bioelectrochemistry; 2005 Feb; 65(2):157-62. PubMed ID: 15713567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption, distribution, and biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine in B6C3F1 mice (Mus musculus).
    Pan X; Ochoa KM; Francisco MJ; Cox SB; Dixon K; Anderson TA; Cobb GP
    Environ Toxicol Chem; 2013 Jun; 32(6):1295-303. PubMed ID: 23423972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global gene expression in rat brain and liver after oral exposure to the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
    Bannon DI; Dillman JF; Hable MA; Phillips CS; Perkins EJ
    Chem Res Toxicol; 2009 Apr; 22(4):620-5. PubMed ID: 19239275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical immunosensors.
    Rabbany SY; Donner BL; Ligler FS
    Crit Rev Biomed Eng; 1994; 22(5-6):307-46. PubMed ID: 8631193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of immunosensors for the analysis of 1-naphthol in organic media.
    Penalva J; Puchades R; Maquieira A; Gee S; Hammock BD
    Biosens Bioelectron; 2000 Jun; 15(3-4):99-106. PubMed ID: 11286340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus).
    Smith JN; Liu J; Espino MA; Cobb GP
    Chemosphere; 2007 May; 67(11):2267-73. PubMed ID: 17275885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.