BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 11743074)

  • 1. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis.
    Kim HJ; Triplett BA
    Plant Physiol; 2001 Dec; 127(4):1361-6. PubMed ID: 11743074
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy.
    Abidi N; Cabrales L; Haigler CH
    Carbohydr Polym; 2014 Jan; 100():9-16. PubMed ID: 24188832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis.
    Gou JY; Wang LJ; Chen SP; Hu WL; Chen XY
    Cell Res; 2007 May; 17(5):422-34. PubMed ID: 17387330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber.
    Chen Y; Wang H; Hu W; Wang S; Wang Y; Snider JL; Zhou Z
    Plant Sci; 2017 Mar; 256():196-207. PubMed ID: 28167033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The visualization of natural luminescence of living cotton hairs.
    Krakhmalev VA; Paiziev AA
    Luminescence; 2005; 20(6):451-4. PubMed ID: 16342229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality.
    Al-Ghazi Y; Bourot S; Arioli T; Dennis ES; Llewellyn DJ
    Plant Cell Physiol; 2009 Jul; 50(7):1364-81. PubMed ID: 19520671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development.
    Tokumoto H; Wakabayashi K; Kamisaka S; Hoson T
    Plant Cell Physiol; 2002 Apr; 43(4):411-8. PubMed ID: 11978869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers.
    Fan L; Shi WJ; Hu WR; Hao XY; Wang DM; Yuan H; Yan HY
    J Integr Plant Biol; 2009 Jul; 51(7):626-37. PubMed ID: 19566641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards breeding strong but fine cotton fibers with a little help from WLIM1a.
    Lockhart J
    Plant Cell; 2013 Nov; 25(11):4281. PubMed ID: 24220633
    [No Abstract]   [Full Text] [Related]  

  • 10. Ultrastructural effects of cellulose biosynthesis inhibitor herbicides on developing cotton fibers.
    Vaughn KC; Turley RB
    Protoplasma; 2001; 216(1-2):80-93. PubMed ID: 11732201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GhDET2, a steroid 5alpha-reductase, plays an important role in cotton fiber cell initiation and elongation.
    Luo M; Xiao Y; Li X; Lu X; Deng W; Li D; Hou L; Hu M; Li Y; Pei Y
    Plant J; 2007 Aug; 51(3):419-30. PubMed ID: 17565582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Down-regulation of GhADF1 gene expression affects cotton fibre properties.
    Wang HY; Wang J; Gao P; Jiao GL; Zhao PM; Li Y; Wang GL; Xia GX
    Plant Biotechnol J; 2009 Jan; 7(1):13-23. PubMed ID: 18761653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation.
    Mei W; Qin Y; Song W; Li J; Zhu Y
    J Genet Genomics; 2009 Mar; 36(3):141-50. PubMed ID: 19302970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-rich islands for fiber development in the cotton genome.
    Xu Z; Kohel RJ; Song G; Cho J; Alabady M; Yu J; Koo P; Chu J; Yu S; Wilkins TA; Zhu Y; Yu JZ
    Genomics; 2008 Sep; 92(3):173-83. PubMed ID: 18619771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wood formation in trees.
    Plomion C; Leprovost G; Stokes A
    Plant Physiol; 2001 Dec; 127(4):1513-23. PubMed ID: 11743096
    [No Abstract]   [Full Text] [Related]  

  • 16. beta-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls.
    Spokevicius AV; Southerton SG; MacMillan CP; Qiu D; Gan S; Tibbits JF; Moran GF; Bossinger G
    Plant J; 2007 Aug; 51(4):717-26. PubMed ID: 17605757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brassinosteroid regulates fiber development on cultured cotton ovules.
    Sun Y; Veerabomma S; Abdel-Mageed HA; Fokar M; Asami T; Yoshida S; Allen RD
    Plant Cell Physiol; 2005 Aug; 46(8):1384-91. PubMed ID: 15958497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in understanding the role of microtubules in plant cells.
    Wasteneys GO
    Curr Opin Plant Biol; 2004 Dec; 7(6):651-60. PubMed ID: 15491913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of the plant cell wall.
    Cosgrove DJ
    Nat Rev Mol Cell Biol; 2005 Nov; 6(11):850-61. PubMed ID: 16261190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers.
    Salnikov VV; Grimson MJ; Seagull RW; Haigler CH
    Protoplasma; 2003 Jun; 221(3-4):175-84. PubMed ID: 12802624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.