These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 11743118)
1. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Andréasson E; Bolt Jørgensen L; Höglund AS; Rask L; Meijer J Plant Physiol; 2001 Dec; 127(4):1750-63. PubMed ID: 11743118 [TBL] [Abstract][Full Text] [Related]
2. Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Thangstad OP; Gilde B; Chadchawan S; Seem M; Husebye H; Bradley D; Bones AM Plant Mol Biol; 2004 Mar; 54(4):597-611. PubMed ID: 15316292 [TBL] [Abstract][Full Text] [Related]
3. 'Myrosin cells' are not a prerequisite for aphid feeding on oilseed rape (Brassica napus) but affect host plant preferences. Borgen BH; Ahuja I; Thangstad OP; Honne BI; Rohloff J; Rossiter JT; Bones AM Plant Biol (Stuttg); 2012 Nov; 14(6):894-904. PubMed ID: 22672561 [TBL] [Abstract][Full Text] [Related]
4. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds. Borgen BH; Thangstad OP; Ahuja I; Rossiter JT; Bones AM J Exp Bot; 2010 Jun; 61(6):1683-97. PubMed ID: 20219777 [TBL] [Abstract][Full Text] [Related]
5. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. Ahuja I; Borgen BH; Hansen M; Honne BI; Müller C; Rohloff J; Rossiter JT; Bones AM J Exp Bot; 2011 Oct; 62(14):4975-93. PubMed ID: 21778185 [TBL] [Abstract][Full Text] [Related]
6. Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins. Eriksson S; Andréasson E; Ekbom B; Granér G; Pontoppidan B; Taipalensuu J; Zhang J; Rask L; Meijer J Plant Physiol; 2002 Aug; 129(4):1592-9. PubMed ID: 12177471 [TBL] [Abstract][Full Text] [Related]
7. Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants. Shirakawa M; Hara-Nishimura I Plant Cell Physiol; 2018 Jul; 59(7):1309-1316. PubMed ID: 29897512 [TBL] [Abstract][Full Text] [Related]
8. Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae. Ahuja I; van Dam NM; Winge P; Trælnes M; Heydarova A; Rohloff J; Langaas M; Bones AM J Exp Bot; 2015 Feb; 66(2):579-92. PubMed ID: 25563968 [TBL] [Abstract][Full Text] [Related]
9. Microautoradiographic localisation of a glucosinolate precursor to specific cells in Brassica napus L. embryos indicates a separate transport pathway into myrosin cells. Thangstad OP; Bones AM; Holtan S; Moen L; Rossiter JT Planta; 2001 Jun; 213(2):207-13. PubMed ID: 11469585 [TBL] [Abstract][Full Text] [Related]
10. Single-Cell RNA Sequencing of Arabidopsis Leaf Tissues Identifies Multiple Specialized Cell Types: Idioblast Myrosin Cells and Potential Glucosinolate-Producing Cells. Maeda T; Sugano SS; Shirakawa M; Sagara M; Ito T; Kondo S; Nagano AJ Plant Cell Physiol; 2023 Mar; 64(2):234-247. PubMed ID: 36440710 [TBL] [Abstract][Full Text] [Related]
11. Differential expression of myrosinase gene families. Lenman M; Falk A; Rödin J; Höglund AS; Ek B; Rask L Plant Physiol; 1993 Nov; 103(3):703-11. PubMed ID: 8022932 [TBL] [Abstract][Full Text] [Related]
12. Myrosin idioblast cell fate and development are regulated by the Arabidopsis transcription factor FAMA, the auxin pathway, and vesicular trafficking. Li M; Sack FD Plant Cell; 2014 Oct; 26(10):4053-66. PubMed ID: 25304201 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a new myrosinase in Brassica napus. Falk A; Ek B; Rask L Plant Mol Biol; 1995 Mar; 27(5):863-74. PubMed ID: 7766877 [TBL] [Abstract][Full Text] [Related]
14. FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis. Shirakawa M; Ueda H; Nagano AJ; Shimada T; Kohchi T; Hara-Nishimura I Plant Cell; 2014 Oct; 26(10):4039-52. PubMed ID: 25304202 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Barth C; Jander G Plant J; 2006 May; 46(4):549-62. PubMed ID: 16640593 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a Brassica napus myrosinase expressed and secreted by Pichia pastoris. Härtel FV; Brandt A Protein Expr Purif; 2002 Mar; 24(2):221-6. PubMed ID: 11858716 [TBL] [Abstract][Full Text] [Related]
17. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds. Niu Y; Rogiewicz A; Wan C; Guo M; Huang F; Slominski BA J Agric Food Chem; 2015 Apr; 63(12):3078-84. PubMed ID: 25765856 [TBL] [Abstract][Full Text] [Related]
18. The Cellular and Subcellular Organization of the Glucosinolate-Myrosinase System against Herbivores and Pathogens. Lv Q; Li X; Fan B; Zhu C; Chen Z Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163500 [TBL] [Abstract][Full Text] [Related]
19. Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Husebye H; Chadchawan S; Winge P; Thangstad OP; Bones AM Plant Physiol; 2002 Apr; 128(4):1180-8. PubMed ID: 11950967 [TBL] [Abstract][Full Text] [Related]
20. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]