BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 11743118)

  • 21. The Cell Differentiation of Idioblast Myrosin Cells: Similarities With Vascular and Guard Cells.
    Shirakawa M; Tanida M; Ito T
    Front Plant Sci; 2021; 12():829541. PubMed ID: 35082820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a flower-specific gene encoding a putative myrosinase binding protein in Arabidopsis thaliana.
    Takechi K; Sakamoto W; Utsugi S; Murata M; Motoyoshi F
    Plant Cell Physiol; 1999 Dec; 40(12):1287-96. PubMed ID: 10682349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunocytochemical localization of myrosinase in Brassica napus L.
    Thangstad OP; Iversen TH; Slupphaug G; Bones A
    Planta; 1990 Jan; 180(2):245-8. PubMed ID: 24201952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: A high-performance liquid chromatography approach.
    Pardini A; Tamasi G; De Rocco F; Bonechi C; Consumi M; Leone G; Magnani A; Rossi C
    Food Chem; 2021 Sep; 355():129634. PubMed ID: 33799240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of rapeseed myrosinase-binding protein.
    Falk A; Taipalensuu J; Ek B; Lenman M; Rask L
    Planta; 1995; 195(3):387-95. PubMed ID: 7766044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties.
    Andersson D; Chakrabarty R; Bejai S; Zhang J; Rask L; Meijer J
    Phytochemistry; 2009; 70(11-12):1345-54. PubMed ID: 19703694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AtVAM3 is required for normal specification of idioblasts, myrosin cells.
    Ueda H; Nishiyama C; Shimada T; Koumoto Y; Hayashi Y; Kondo M; Takahashi T; Ohtomo I; Nishimura M; Hara-Nishimura I
    Plant Cell Physiol; 2006 Jan; 47(1):164-75. PubMed ID: 16306062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative investigations of the glucosinolate-myrosinase system in Arabidopsis suspension cells and hypocotyls.
    Alvarez S; He Y; Chen S
    Plant Cell Physiol; 2008 Mar; 49(3):324-33. PubMed ID: 18202003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart.
    Taipalensuu J; Eriksson S; Rask L
    Eur J Biochem; 1997 Dec; 250(3):680-8. PubMed ID: 9461290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea.
    Sougrakpam Y; Deswal R
    Plant Sci; 2024 Feb; 339():111932. PubMed ID: 38030037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revised determination of free and complexed myrosinase activities in plant extracts.
    Travers-Martin N; Kuhlmann F; Müller C
    Plant Physiol Biochem; 2008 Apr; 46(4):506-16. PubMed ID: 18395461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates.
    Burow M; Markert J; Gershenzon J; Wittstock U
    FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of glucosinolate--myrosinase system in developing salt cress Thellungiella halophila.
    Pang Q; Chen S; Li L; Yan X
    Physiol Plant; 2009 May; 136(1):1-9. PubMed ID: 19508363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis.
    Capella AN; Menossi M; Arruda P; Benedetti CE
    Planta; 2001 Sep; 213(5):691-9. PubMed ID: 11678272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A wound- and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin.
    Taipalensuu J; Falk A; Rask L
    Plant Physiol; 1996 Feb; 110(2):483-91. PubMed ID: 8742330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway.
    Auger B; Pouvreau JB; Pouponneau K; Yoneyama K; Montiel G; Le Bizec B; Yoneyama K; Delavault P; Delourme R; Simier P
    Mol Plant Microbe Interact; 2012 Jul; 25(7):993-1004. PubMed ID: 22414435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae.
    Chen S; Halkier BA
    Protein Expr Purif; 1999 Dec; 17(3):414-20. PubMed ID: 10600460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two jasmonate-inducible myrosinase-binding proteins from Brassica napus L. seedlings with homology to jacalin.
    Geshi N; Brandt A
    Planta; 1998 Mar; 204(3):295-304. PubMed ID: 9530873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana.
    Hirschmann F; Papenbrock J
    Plant Physiol Biochem; 2015 Jun; 91():10-9. PubMed ID: 25827495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of glucosinolate-myrosinase system during Plutella xylostella interaction to a novel host Lepidium latifolium L.
    Kaur T; Bhat R; Khajuria M; Vyas R; Kumari A; Nadda G; Vishwakarma R; Vyas D
    Plant Sci; 2016 Sep; 250():1-9. PubMed ID: 27457978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.