These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 11743118)
21. The Cell Differentiation of Idioblast Myrosin Cells: Similarities With Vascular and Guard Cells. Shirakawa M; Tanida M; Ito T Front Plant Sci; 2021; 12():829541. PubMed ID: 35082820 [TBL] [Abstract][Full Text] [Related]
22. Characterization of a flower-specific gene encoding a putative myrosinase binding protein in Arabidopsis thaliana. Takechi K; Sakamoto W; Utsugi S; Murata M; Motoyoshi F Plant Cell Physiol; 1999 Dec; 40(12):1287-96. PubMed ID: 10682349 [TBL] [Abstract][Full Text] [Related]
23. Immunocytochemical localization of myrosinase in Brassica napus L. Thangstad OP; Iversen TH; Slupphaug G; Bones A Planta; 1990 Jan; 180(2):245-8. PubMed ID: 24201952 [TBL] [Abstract][Full Text] [Related]
24. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: A high-performance liquid chromatography approach. Pardini A; Tamasi G; De Rocco F; Bonechi C; Consumi M; Leone G; Magnani A; Rossi C Food Chem; 2021 Sep; 355():129634. PubMed ID: 33799240 [TBL] [Abstract][Full Text] [Related]
25. Characterization of rapeseed myrosinase-binding protein. Falk A; Taipalensuu J; Ek B; Lenman M; Rask L Planta; 1995; 195(3):387-95. PubMed ID: 7766044 [TBL] [Abstract][Full Text] [Related]
26. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Andersson D; Chakrabarty R; Bejai S; Zhang J; Rask L; Meijer J Phytochemistry; 2009; 70(11-12):1345-54. PubMed ID: 19703694 [TBL] [Abstract][Full Text] [Related]
27. AtVAM3 is required for normal specification of idioblasts, myrosin cells. Ueda H; Nishiyama C; Shimada T; Koumoto Y; Hayashi Y; Kondo M; Takahashi T; Ohtomo I; Nishimura M; Hara-Nishimura I Plant Cell Physiol; 2006 Jan; 47(1):164-75. PubMed ID: 16306062 [TBL] [Abstract][Full Text] [Related]
28. Comparative investigations of the glucosinolate-myrosinase system in Arabidopsis suspension cells and hypocotyls. Alvarez S; He Y; Chen S Plant Cell Physiol; 2008 Mar; 49(3):324-33. PubMed ID: 18202003 [TBL] [Abstract][Full Text] [Related]
29. The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart. Taipalensuu J; Eriksson S; Rask L Eur J Biochem; 1997 Dec; 250(3):680-8. PubMed ID: 9461290 [TBL] [Abstract][Full Text] [Related]
30. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea. Sougrakpam Y; Deswal R Plant Sci; 2024 Feb; 339():111932. PubMed ID: 38030037 [TBL] [Abstract][Full Text] [Related]
31. Revised determination of free and complexed myrosinase activities in plant extracts. Travers-Martin N; Kuhlmann F; Müller C Plant Physiol Biochem; 2008 Apr; 46(4):506-16. PubMed ID: 18395461 [TBL] [Abstract][Full Text] [Related]
32. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
33. Characterization of glucosinolate--myrosinase system in developing salt cress Thellungiella halophila. Pang Q; Chen S; Li L; Yan X Physiol Plant; 2009 May; 136(1):1-9. PubMed ID: 19508363 [TBL] [Abstract][Full Text] [Related]
34. COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis. Capella AN; Menossi M; Arruda P; Benedetti CE Planta; 2001 Sep; 213(5):691-9. PubMed ID: 11678272 [TBL] [Abstract][Full Text] [Related]
35. A wound- and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin. Taipalensuu J; Falk A; Rask L Plant Physiol; 1996 Feb; 110(2):483-91. PubMed ID: 8742330 [TBL] [Abstract][Full Text] [Related]
36. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway. Auger B; Pouvreau JB; Pouponneau K; Yoneyama K; Montiel G; Le Bizec B; Yoneyama K; Delavault P; Delourme R; Simier P Mol Plant Microbe Interact; 2012 Jul; 25(7):993-1004. PubMed ID: 22414435 [TBL] [Abstract][Full Text] [Related]
37. Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae. Chen S; Halkier BA Protein Expr Purif; 1999 Dec; 17(3):414-20. PubMed ID: 10600460 [TBL] [Abstract][Full Text] [Related]
38. Two jasmonate-inducible myrosinase-binding proteins from Brassica napus L. seedlings with homology to jacalin. Geshi N; Brandt A Planta; 1998 Mar; 204(3):295-304. PubMed ID: 9530873 [TBL] [Abstract][Full Text] [Related]
39. The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana. Hirschmann F; Papenbrock J Plant Physiol Biochem; 2015 Jun; 91():10-9. PubMed ID: 25827495 [TBL] [Abstract][Full Text] [Related]
40. Dynamics of glucosinolate-myrosinase system during Plutella xylostella interaction to a novel host Lepidium latifolium L. Kaur T; Bhat R; Khajuria M; Vyas R; Kumari A; Nadda G; Vishwakarma R; Vyas D Plant Sci; 2016 Sep; 250():1-9. PubMed ID: 27457978 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]