These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 11743715)
1. The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation. Wikström P; O'Neill E; Ng LC; Shingler V J Mol Biol; 2001 Dec; 314(5):971-84. PubMed ID: 11743715 [TBL] [Abstract][Full Text] [Related]
2. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria. Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010 [TBL] [Abstract][Full Text] [Related]
3. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54. Bordes P; Wigneshweraraj SR; Schumacher J; Zhang X; Chaney M; Buck M Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2278-83. PubMed ID: 12601152 [TBL] [Abstract][Full Text] [Related]
4. Sigma54-dependent transcription activator phage shock protein F of Escherichia coli: a fragmentation approach to identify sequences that contribute to self-association. Bordes P; Wigneshweraraj SR; Zhang X; Buck M Biochem J; 2004 Mar; 378(Pt 3):735-44. PubMed ID: 14659000 [TBL] [Abstract][Full Text] [Related]
5. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Shingler V; Pavel H Mol Microbiol; 1995 Aug; 17(3):505-13. PubMed ID: 8559069 [TBL] [Abstract][Full Text] [Related]
6. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation. Xu H; Kelly MT; Nixon BT; Hoover TR Mol Microbiol; 2004 Oct; 54(1):32-44. PubMed ID: 15458403 [TBL] [Abstract][Full Text] [Related]
7. Tetrameric architecture of an active phenol-bound form of the AAA Park KH; Kim S; Lee SJ; Cho JE; Patil VV; Dumbrepatil AB; Song HN; Ahn WC; Joo C; Lee SG; Shingler V; Woo EJ Nat Commun; 2020 Jun; 11(1):2728. PubMed ID: 32483114 [TBL] [Abstract][Full Text] [Related]
8. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. Schumacher J; Joly N; Rappas M; Zhang X; Buck M J Struct Biol; 2006 Oct; 156(1):190-9. PubMed ID: 16531068 [TBL] [Abstract][Full Text] [Related]
9. Genetic evidence for interdomain regulation of the phenol-responsive final sigma54-dependent activator DmpR. Ng LC; O'Neill E; Shingler V J Biol Chem; 1996 Jul; 271(29):17281-6. PubMed ID: 8663326 [TBL] [Abstract][Full Text] [Related]
10. The Y233 gatekeeper of DmpR modulates effector-responsive transcriptional control of σ Seibt H; Sauer UH; Shingler V Environ Microbiol; 2019 Apr; 21(4):1321-1330. PubMed ID: 30773776 [TBL] [Abstract][Full Text] [Related]
11. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. Fodje MN; Hansson A; Hansson M; Olsen JG; Gough S; Willows RD; Al-Karadaghi S J Mol Biol; 2001 Aug; 311(1):111-22. PubMed ID: 11469861 [TBL] [Abstract][Full Text] [Related]
12. Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR. O'Neill E; Ng LC; Sze CC; Shingler V Mol Microbiol; 1998 Apr; 28(1):131-41. PubMed ID: 9593302 [TBL] [Abstract][Full Text] [Related]
13. Structure and mechanism of the RuvB Holliday junction branch migration motor. Putnam CD; Clancy SB; Tsuruta H; Gonzalez S; Wetmur JG; Tainer JA J Mol Biol; 2001 Aug; 311(2):297-310. PubMed ID: 11478862 [TBL] [Abstract][Full Text] [Related]
14. Novel effector control through modulation of a preexisting binding site of the aromatic-responsive sigma(54)-dependent regulator DmpR. O'Neill E; Sze CC; Shingler V J Biol Chem; 1999 Nov; 274(45):32425-32. PubMed ID: 10542286 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. Lacal J; Guazzaroni ME; Busch A; Krell T; Ramos JL J Mol Biol; 2008 Feb; 376(2):325-37. PubMed ID: 18166197 [TBL] [Abstract][Full Text] [Related]
16. Identification of an effector specificity subregion within the aromatic-responsive regulators DmpR and XylR by DNA shuffling. Skärfstad E; O'Neill E; Garmendia J; Shingler V J Bacteriol; 2000 Jun; 182(11):3008-16. PubMed ID: 10809676 [TBL] [Abstract][Full Text] [Related]
17. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. Shingler V; Bartilson M; Moore T J Bacteriol; 1993 Mar; 175(6):1596-604. PubMed ID: 8449869 [TBL] [Abstract][Full Text] [Related]
18. The homologous pairing domain of RecA also mediates the allosteric regulation of DNA binding and ATP hydrolysis: a remarkable concentration of functional residues. Voloshin ON; Wang L; Camerini-Otero RD J Mol Biol; 2000 Nov; 303(5):709-20. PubMed ID: 11061970 [TBL] [Abstract][Full Text] [Related]
19. PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. Herrera MC; Krell T; Zhang X; Ramos JL J Mol Biol; 2009 Dec; 394(3):576-86. PubMed ID: 19781550 [TBL] [Abstract][Full Text] [Related]
20. The ATP-binding motif in AcoK is required for regulation of acetoin catabolism in Klebsiella pneumoniae CG43. Hsu JL; Peng HL; Chang HY Biochem Biophys Res Commun; 2008 Nov; 376(1):121-7. PubMed ID: 18765233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]