BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11743774)

  • 1. Insecticidal fatty acids and triglycerides from Dirca palustris.
    Ramsewak RS; Nair MG; Murugesan S; Mattson WJ; Zasada J
    J Agric Food Chem; 2001 Dec; 49(12):5852-6. PubMed ID: 11743774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds.
    Momin RA; Nair MG
    J Agric Food Chem; 2001 Jan; 49(1):142-5. PubMed ID: 11305251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insecticidal activity against Aedes aegypti of m-pentadecadienyl-phenol isolated from Myracrodruon urundeuva seeds.
    Souza TM; Cunha AP; Farias DF; Machado LK; Morais SM; Ricardo NM; Carvalho AF
    Pest Manag Sci; 2012 Oct; 68(10):1380-4. PubMed ID: 22689540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pest-managing efficacy of trans-asarone isolated from Daucus carota L. seeds.
    Momin RA; Nair MG
    J Agric Food Chem; 2002 Jul; 50(16):4475-8. PubMed ID: 12137463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of mosquito biting deterrent constituents from the Indian folk remedy plant Jatropha curcas.
    Cantrell CL; Ali A; Duke SO; Khan I
    J Med Entomol; 2011 Jul; 48(4):836-45. PubMed ID: 21845943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive compounds and 1,3-Di[(cis)-9-octadecenoyl]-2-[(cis,cis)-9, 12-octadecadienoyl]glycerol from Apium graveolens L. seeds.
    Momin RA; Ramsewak RS; Nair MG
    J Agric Food Chem; 2000 Sep; 48(9):3785-8. PubMed ID: 10995271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of Aedes aegypti and Culex quinquefasciatus Larvae to gedunin-related limonoids.
    Gurulingappa H; Tare V; Pawar P; Tungikar V; Jorapur YR; Madhavi S; Bhat SV
    Chem Biodivers; 2009 Jun; 6(6):897-902. PubMed ID: 19551731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Larvicidal activity of bis(2-ethylhexyl) benzene-1,2-dicarboxylate from Sterculia guttata seeds against two mosquito species.
    Katade SR; Pawar PV; Tungikar VB; Tambe AS; Kalal KM; Wakharkar RD; Deshpande NR
    Chem Biodivers; 2006 Jan; 3(1):49-53. PubMed ID: 17193215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of rotenoids from the seeds of Millettia dura on larvae of Aedes aegypti.
    Yenesew A; Derese S; Midiwo JO; Heydenreich M; Peter MG
    Pest Manag Sci; 2003 Oct; 59(10):1159-61. PubMed ID: 14561074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical composition and larvicidal activities of Azolla pinnata extracts against Aedes (Diptera:Culicidae).
    Ravi R; Zulkrnin NSH; Rozhan NN; Nik Yusoff NR; Mat Rasat MS; Ahmad MI; Ishak IH; Amin MFM
    PLoS One; 2018; 13(11):e0206982. PubMed ID: 30399167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects.
    Thanigaivel A; Vasantha-Srinivasan P; Senthil-Nathan S; Edwin ES; Ponsankar A; Chellappandian M; Selin-Rani S; Lija-Escaline J; Kalaivani K
    Ecotoxicol Environ Saf; 2017 Mar; 137():210-217. PubMed ID: 27940415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species.
    Perumalsamy H; Jang MJ; Kim JR; Kadarkarai M; Ahn YJ
    Parasit Vectors; 2015 Apr; 8():237. PubMed ID: 25928224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoactivated insecticidal thiophene derivatives from Xanthopappus subacaulis.
    Tian Y; Wei X; Xu H
    J Nat Prod; 2006 Aug; 69(8):1241-4. PubMed ID: 16933888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ovicidal and adulticidal potential of leaf and seed extract of Albizia lebbeck (L.) Benth. (Family: Fabaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi (Diptera: Culicidae).
    Govindarajan M; Rajeswary M
    Parasitol Res; 2015 May; 114(5):1949-61. PubMed ID: 25681143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insecticidal compounds from Rhizophoraceae mangrove plants for the management of dengue vector Aedes aegypti.
    Ali MS; Ravikumar S; Beula JM; Anuradha V; Yogananth N
    J Vector Borne Dis; 2014 Jun; 51(2):106-14. PubMed ID: 24947217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insecticidal and biting deterrent activity of rose-scented geranium (Pelargonium spp.) essential oils and individual compounds against Stephanitis pyrioides and Aedes aegypti.
    Ali A; Murphy CC; Demirci B; Wedge DE; Sampson BJ; Khan IA; Baser KH; Tabanca N
    Pest Manag Sci; 2013 Dec; 69(12):1385-92. PubMed ID: 23423995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry.
    Karowe DN
    Oecologia; 1989 Sep; 80(4):507-512. PubMed ID: 28312836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis, and insecticidal activity of some novel diacylhydrazine and acylhydrazone derivatives.
    Sun J; Zhou Y
    Molecules; 2015 Mar; 20(4):5625-37. PubMed ID: 25830791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Larvicidal activity and insecticidal mechanism of Chelidonium majus on Lymantria dispar.
    Zou C; Lv C; Wang Y; Cao C; Zhang G
    Pestic Biochem Physiol; 2017 Oct; 142():123-132. PubMed ID: 29107235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae.
    de Melo AR; Pereira Garcia IJ; Serrão JE; Santos HL; Rodrigues Dos Santos Lima LA; Alves SN
    Ecotoxicol Environ Saf; 2018 Jun; 154():1-5. PubMed ID: 29448064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.