BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11744091)

  • 21. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice.
    Tran EH; Hoekstra K; van Rooijen N; Dijkstra CD; Owens T
    J Immunol; 1998 Oct; 161(7):3767-75. PubMed ID: 9759903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.
    Hammer LA; Waldner H; Zagon IS; McLaughlin PJ
    Exp Biol Med (Maywood); 2016 Jan; 241(1):71-8. PubMed ID: 26202376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypothalamic-pituitary-adrenocortical axis changes in a transgenic mouse with impaired glucocorticoid receptor function.
    Karanth S; Linthorst AC; Stalla GK; Barden N; Holsboer F; Reul JM
    Endocrinology; 1997 Aug; 138(8):3476-85. PubMed ID: 9231802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-Methyl-D-aspartate (NMDA) receptor involvement in central nervous system prostaglandin production during the relapse phase of chronic relapsing experimental autoimmune encephalomyelitis (CR EAE).
    Bolton C; Wood EG; Ayoub SS
    Fundam Clin Pharmacol; 2013 Oct; 27(5):535-43. PubMed ID: 22742874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood.
    Yadav SK; Boppana S; Ito N; Mindur JE; Mathay MT; Patel A; Dhib-Jalbut S; Ito K
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):E9318-E9327. PubMed ID: 29078267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: a review.
    Willenborg DO; Staykova MA; Cowden WB
    J Neuroimmunol; 1999 Dec; 100(1-2):21-35. PubMed ID: 10695712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice.
    Ding M; Zhang M; Wong JL; Rogers NE; Ignarro LJ; Voskuhl RR
    J Immunol; 1998 Mar; 160(6):2560-4. PubMed ID: 9510151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-level laser therapy ameliorates disease progression in a mouse model of multiple sclerosis.
    Gonçalves ED; Souza PS; Lieberknecht V; Fidelis GS; Barbosa RI; Silveira PC; de Pinho RA; Dutra RC
    Autoimmunity; 2016; 49(2):132-42. PubMed ID: 26703077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic exposure to stress predisposes to higher autoimmune susceptibility in C57BL/6 mice: glucocorticoids as a double-edged sword.
    Harpaz I; Abutbul S; Nemirovsky A; Gal R; Cohen H; Monsonego A
    Eur J Immunol; 2013 Mar; 43(3):758-69. PubMed ID: 23255172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.
    Vyas S; Maatouk L
    CNS Neurol Disord Drug Targets; 2013 Dec; 12(8):1175-93. PubMed ID: 24040816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced activity of hypothalamic corticotropin-releasing hormone neurons in transgenic mice with impaired glucocorticoid receptor function.
    Dijkstra I; Tilders FJ; Aguilera G; Kiss A; Rabadan-Diehl C; Barden N; Karanth S; Holsboer F; Reul JM
    J Neurosci; 1998 May; 18(10):3909-18. PubMed ID: 9570818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partial blockade of T-cell differentiation during ontogeny and marked alterations of the thymic microenvironment in transgenic mice with impaired glucocorticoid receptor function.
    Sacedón R; Vicente A; Varas A; Morale MC; Barden N; Marchetti B; Zapata AG
    J Neuroimmunol; 1999 Aug; 98(2):157-67. PubMed ID: 10430049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response.
    Kipnis J; Yoles E; Schori H; Hauben E; Shaked I; Schwartz M
    J Neurosci; 2001 Jul; 21(13):4564-71. PubMed ID: 11425884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mice overexpressing Bcl-2 in their neurons are resistant to myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE).
    Offen D; Kaye JF; Bernard O; Merims D; Coire CI; Panet H; Melamed E; Ben-Nun A
    J Mol Neurosci; 2000 Dec; 15(3):167-76. PubMed ID: 11303781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption.
    Souza PS; Gonçalves ED; Pedroso GS; Farias HR; Junqueira SC; Marcon R; Tuon T; Cola M; Silveira PCL; Santos AR; Calixto JB; Souza CT; de Pinho RA; Dutra RC
    Mol Neurobiol; 2017 Aug; 54(6):4723-4737. PubMed ID: 27447807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation.
    Luz A; Fainstein N; Einstein O; Ben-Hur T
    Exp Neurol; 2015 Nov; 273():234-42. PubMed ID: 26342755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of leukocyte activity in mice devoid of the glucocorticoid receptor in the noradrenergic system (GR
    Roman A; Kuśmierczyk J; Kreiner G; Nalepa I
    Immunobiology; 2018 Feb; 223(2):227-238. PubMed ID: 29030008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes.
    Natarajan C; Bright JJ
    J Immunol; 2002 Jun; 168(12):6506-13. PubMed ID: 12055272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.
    Benkhoucha M; Molnarfi N; Dunand-Sauthier I; Merkler D; Schneiter G; Bruscoli S; Riccardi C; Tabata Y; Funakoshi H; Nakamura T; Reith W; Santiago-Raber ML; Lalive PH
    J Immunol; 2014 Sep; 193(6):2743-52. PubMed ID: 25114100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways.
    Weller RO; Engelhardt B; Phillips MJ
    Brain Pathol; 1996 Jul; 6(3):275-88. PubMed ID: 8864284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.