These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11744191)

  • 1. Mitochondria regulate the amplitude of simple and complex calcium oscillations.
    Grubelnik V; Larsen AZ; Kummer U; Olsen LF; Marhl M
    Biophys Chem; 2001 Dec; 94(1-2):59-74. PubMed ID: 11744191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria as an important factor in the maintenance of constant amplitudes of cytosolic calcium oscillations.
    Marhl M; Schuster S; Brumen M
    Biophys Chem; 1998 Apr; 2(3):125-32. PubMed ID: 12369585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay Between Intracellular Ca(2+) Oscillations and Ca(2+)-stimulated Mitochondrial Metabolism.
    Wacquier B; Combettes L; Van Nhieu GT; Dupont G
    Sci Rep; 2016 Jan; 6():19316. PubMed ID: 26776859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex calcium oscillations and the role of mitochondria and cytosolic proteins.
    Marhl M; Haberichter T; Brumen M; Heinrich R
    Biosystems; 2000 Jul; 57(2):75-86. PubMed ID: 11004387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria as an important factor in the maintenance of constant amplitudes of cytosolic calcium oscillations.
    Marhl M; Schuster S; Brumen M
    Biophys Chem; 1998 Apr; 71(2-3):125-32. PubMed ID: 17029696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of mitochondrial Ca(2+)-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria.
    Selivanov VA; Ichas F; Holmuhamedov EL; Jouaville LS; Evtodienko YV; Mazat JP
    Biophys Chem; 1998 May; 72(1-2):111-21. PubMed ID: 9652089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained oscillations of transmembrane Ca2+ fluxes in mitochondria and their possible biological significance.
    Evtodienko YV
    Membr Cell Biol; 2000; 14(1):1-17. PubMed ID: 11051078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Store-operated calcium entry could prevent continuous spiking of membrane potential to sustain normal intracellular calcium oscillations and normal potential bursting in pancreatic β-cells.
    Liu W
    Math Biosci; 2013 Jun; 243(2):240-50. PubMed ID: 23541786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables.
    Magnus G; Keizer J
    Am J Physiol; 1998 Apr; 274(4):C1158-73. PubMed ID: 9575813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function.
    Gincel D; Zaid H; Shoshan-Barmatz V
    Biochem J; 2001 Aug; 358(Pt 1):147-55. PubMed ID: 11485562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relative contributions of store-operated and voltage-gated Ca
    Boie S; Chen J; Sanderson MJ; Sneyd J
    J Physiol; 2017 May; 595(10):3129-3141. PubMed ID: 27502470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of mitochondrial ionic homeostasis: three modes of Ca2+ transport.
    Pokhilko AV; Ataullakhanov FI; Holmuhamedov EL
    J Theor Biol; 2006 Nov; 243(1):152-69. PubMed ID: 16859713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations.
    Kowalewski JM; Uhlén P; Kitano H; Brismar H
    Math Biosci; 2006 Dec; 204(2):232-49. PubMed ID: 16620876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency encoding of intracellular Ca2+ signals.
    Grubelnik V; Marhl M
    Cell Mol Biol Lett; 2002; 7(1):115-7. PubMed ID: 11944060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux.
    Matsuzaki H; Fujimoto T; Tanaka M; Shirasawa S
    Biochem Biophys Res Commun; 2013 Apr; 433(3):322-6. PubMed ID: 23501103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Calcium Entry by Mitochondria.
    Fonteriz R; Matesanz-Isabel J; Arias-Del-Val J; Alvarez-Illera P; Montero M; Alvarez J
    Adv Exp Med Biol; 2016; 898():405-21. PubMed ID: 27161238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial calcium homeostasis: mechanisms and molecules.
    Vandecasteele G; Szabadkai G; Rizzuto R
    IUBMB Life; 2001; 52(3-5):213-9. PubMed ID: 11798035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular free calcium and mitochondrial membrane potential in ischemia/reperfusion and preconditioning.
    Ylitalo KV; Ala-Rämi A; Liimatta EV; Peuhkurinen KJ; Hassinen IE
    J Mol Cell Cardiol; 2000 Jul; 32(7):1223-38. PubMed ID: 10860765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical model of outer hair cell regulation including ion transport and cell motility.
    O'Beirne GA; Patuzzi RB
    Hear Res; 2007 Dec; 234(1-2):29-51. PubMed ID: 17981412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling.
    Schuster S; Marhl M; Höfer T
    Eur J Biochem; 2002 Mar; 269(5):1333-55. PubMed ID: 11874447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.