BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11744256)

  • 1. Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel.
    Doyle LM; Stafford PP; Roberts BL
    Neuroscience; 2001; 107(1):169-79. PubMed ID: 11744256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise enhances axonal growth and functional recovery in the regenerating spinal cord.
    Doyle LM; Roberts BL
    Neuroscience; 2006 Aug; 141(1):321-7. PubMed ID: 16675131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional recovery and axonal growth following spinal cord transection is accelerated by sustained L-DOPA administration.
    Doyle LM; Roberts BL
    Eur J Neurosci; 2004 Oct; 20(8):2008-14. PubMed ID: 15450079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site.
    Tillakaratne NJ; Guu JJ; de Leon RD; Bigbee AJ; London NJ; Zhong H; Ziegler MD; Joynes RL; Roy RR; Edgerton VR
    Neuroscience; 2010 Mar; 166(1):23-33. PubMed ID: 20006680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration.
    Dervan AG; Roberts BL
    J Comp Neurol; 2003 Apr; 458(3):293-306. PubMed ID: 12619082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA receptor blockade retards axonal growth in the transected spinal cord.
    Doyle LM; Roberts BL
    Neuroreport; 2004 Oct; 15(15):2361-4. PubMed ID: 15640756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.
    Lee YS; Lin CY; Robertson RT; Hsiao I; Lin VW
    J Neuropathol Exp Neurol; 2004 Mar; 63(3):233-45. PubMed ID: 15055447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord repair in neonatal rats: a correlation between axonal regeneration and functional recovery.
    Hase T; Kawaguchi S; Hayashi H; Nishio T; Mizoguchi A; Nakamura T
    Eur J Neurosci; 2002 Mar; 15(6):969-74. PubMed ID: 11918656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.
    Martin GF; Terman JR; Wang XM
    Brain Res Bull; 2000 Nov; 53(5):677-87. PubMed ID: 11165803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat.
    López-Vales R; Forés J; Navarro X; Verdú E
    Glia; 2007 Feb; 55(3):303-11. PubMed ID: 17096411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 12. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD
    J Neurophysiol; 1994 Aug; 72(2):847-60. PubMed ID: 7983540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in descending brain-spinal cord projections with age in larval lamprey: implications for spinal cord injury.
    Zhang L; Palmer R; McClellan AD
    J Comp Neurol; 2002 May; 447(2):128-37. PubMed ID: 11977116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noradrenergic innervation of the rat spinal cord caudal to a complete spinal cord transection: effects of olfactory ensheathing glia.
    Takeoka A; Kubasak MD; Zhong H; Kaplan J; Roy RR; Phelps PE
    Exp Neurol; 2010 Mar; 222(1):59-69. PubMed ID: 20025875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat.
    Hendriks WT; Eggers R; Ruitenberg MJ; Blits B; Hamers FP; Verhaagen J; Boer GJ
    J Neurotrauma; 2006 Jan; 23(1):18-35. PubMed ID: 16430370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ibuprofen enhances recovery from spinal cord injury by limiting tissue loss and stimulating axonal growth.
    Wang X; Budel S; Baughman K; Gould G; Song KH; Strittmatter SM
    J Neurotrauma; 2009 Jan; 26(1):81-95. PubMed ID: 19125588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats.
    Liang H; Liang P; Xu Y; Wu J; Liang T; Xu X
    J Neurotrauma; 2009 Oct; 26(10):1745-57. PubMed ID: 19413502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.
    Benthall KN; Hough RA; McClellan AD
    J Neurophysiol; 2017 Jan; 117(1):215-229. PubMed ID: 27760818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.