These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 11744753)

  • 1. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine.
    Laver DR; Lenz GK; Lamb GD
    J Physiol; 2001 Dec; 537(Pt 3):763-78. PubMed ID: 11744753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cytoplasmic and luminal pH on Ca(2+) release channels from rabbit skeletal muscle.
    Laver DR; Eager KR; Taoube L; Lamb GD
    Biophys J; 2000 Apr; 78(4):1835-51. PubMed ID: 10733964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle.
    Laver DR; Roden LD; Ahern GP; Eager KR; Junankar PR; Dulhunty AF
    J Membr Biol; 1995 Sep; 147(1):7-22. PubMed ID: 8531200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors.
    Copello JA; Barg S; Onoue H; Fleischer S
    Biophys J; 1997 Jul; 73(1):141-56. PubMed ID: 9199779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties.
    Percival AL; Williams AJ; Kenyon JL; Grinsell MM; Airey JA; Sutko JL
    Biophys J; 1994 Nov; 67(5):1834-50. PubMed ID: 7532019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation and inhibition of skeletal RyR channels by a part of the skeletal DHPR II-III loop: effects of DHPR Ser687 and FKBP12.
    Dulhunty AF; Laver DR; Gallant EM; Casarotto MG; Pace SM; Curtis S
    Biophys J; 1999 Jul; 77(1):189-203. PubMed ID: 10388749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the calcium release channel/ryanodine receptor from skeletal muscle by energy charge.
    Butanda-Ochoa A; Diaz Muñoz M
    Neurobiology (Bp); 1998; 6(1):1-12. PubMed ID: 9713827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminal Ca2+-regulated Mg2+ inhibition of skeletal RyRs reconstituted as isolated channels or coupled clusters.
    Laver DR; O'Neill ER; Lamb GD
    J Gen Physiol; 2004 Dec; 124(6):741-58. PubMed ID: 15545399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of irreversible ATP activation suggest that native skeletal ryanodine receptors can be phosphorylated via an endogenous CaMKII.
    Dulhunty AF; Laver D; Curtis SM; Pace S; Haarmann C; Gallant EM
    Biophys J; 2001 Dec; 81(6):3240-52. PubMed ID: 11720989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12.
    Ahern GP; Junankar PR; Dulhunty AF
    Biophys J; 1997 Jan; 72(1):146-62. PubMed ID: 8994600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled calcium release channels and their regulation by luminal and cytosolic ions.
    Laver DR
    Eur Biophys J; 2005 Jul; 34(5):359-68. PubMed ID: 15915341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide activates or inhibits skeletal muscle ryanodine receptors depending on its concentration, membrane potential and ligand binding.
    Hart JD; Dulhunty AF
    J Membr Biol; 2000 Feb; 173(3):227-36. PubMed ID: 10667918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered inhibition of the rat skeletal ryanodine receptor/calcium release channel by magnesium in the presence of ATP.
    Jóna I; Szegedi C; Sárközi S; Szentesi P; Csernoch L; Kovács L
    Pflugers Arch; 2001 Mar; 441(6):729-38. PubMed ID: 11316255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eudistomin D and penaresin derivatives as modulators of ryanodine receptor channels and sarcoplasmic reticulum Ca2+ ATPase in striated muscle.
    Diaz-Sylvester PL; Porta M; Juettner VV; Lv Y; Fleischer S; Copello JA
    Mol Pharmacol; 2014 Apr; 85(4):564-75. PubMed ID: 24423447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism.
    Lokuta AJ; Rogers TB; Lederer WJ; Valdivia HH
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):609-22. PubMed ID: 8544125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the interactions of isolated ryanodine receptors of rabbit skeletal muscle by Na+ and K+.
    Hu XF; Chen KY; Xia R; Xu YH; Sun JL; Hu J; Zhu PH
    Biochemistry; 2003 May; 42(18):5515-21. PubMed ID: 12731894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desensitization of the skeletal muscle ryanodine receptor: evidence for heterogeneity of calcium release channels.
    Ma J
    Biophys J; 1995 Mar; 68(3):893-9. PubMed ID: 7756554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of fluorescein isothiocyanate with the ryanodine receptor/Ca2+ release channel of sarcoplasmic reticulum.
    Orr I; Martin C; Ashley R; Shoshan-Barmatz V
    J Biol Chem; 1993 Jan; 268(2):1376-82. PubMed ID: 8380411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the effects of UTP and ATP on the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum.
    Suarez-Kurtz G
    Braz J Med Biol Res; 1994 Nov; 27(11):2661-6. PubMed ID: 7549990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.