These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 11744753)

  • 21. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle.
    Treves S; Scutari E; Robert M; Groh S; Ottolia M; Prestipino G; Ronjat M; Zorzato F
    Biochemistry; 1997 Sep; 36(38):11496-503. PubMed ID: 9298970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of the skeletal muscle Ca2+ release channel/ryanodine receptor by adenosine and its metabolites: a structure-activity approach.
    Butanda-Ochoa A; Höjer G; Díaz-Muñoz M
    Bioorg Med Chem; 2003 Jul; 11(13):3029-37. PubMed ID: 12788371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three independent mechanisms contribute to tetracaine inhibition of cardiac calcium release channels.
    Laver DR; van Helden DF
    J Mol Cell Cardiol; 2011 Sep; 51(3):357-69. PubMed ID: 21624373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation and labelling of the purified skeletal muscle ryanodine receptor by an oxidized ATP analogue.
    Hohenegger M; Herrmann-Frank A; Richter M; Lehmann-Horn F
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):119-25. PubMed ID: 7755553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms.
    el-Hayek R; Lokuta AJ; Arévalo C; Valdivia HH
    J Biol Chem; 1995 Dec; 270(48):28696-704. PubMed ID: 7499390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel.
    Tripathy A; Meissner G
    Biophys J; 1996 Jun; 70(6):2600-15. PubMed ID: 8744299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenosine inhibits depolarization-induced Ca(2+) release in mammalian skeletal muscle.
    Blazev R; Lamb GD
    Muscle Nerve; 1999 Dec; 22(12):1674-83. PubMed ID: 10567080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of ryanodine receptor/Ca2+ release channel with dinitrofluorobenzene.
    Hadad N; Feng W; Shoshan-Barmatz V
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):239-48. PubMed ID: 10432322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors.
    Copello JA; Qi Y; Jeyakumar LH; Ogunbunmi E; Fleischer S
    Cell Calcium; 2001 Oct; 30(4):269-84. PubMed ID: 11587551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Luminal Mg2+, a key factor controlling RYR2-mediated Ca2+ release: cytoplasmic and luminal regulation modeled in a tetrameric channel.
    Laver DR; Honen BN
    J Gen Physiol; 2008 Oct; 132(4):429-46. PubMed ID: 18824590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia.
    Laver DR; Owen VJ; Junankar PR; Taske NL; Dulhunty AF; Lamb GD
    Biophys J; 1997 Oct; 73(4):1913-24. PubMed ID: 9336187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ruthenium red modifies the cardiac and skeletal muscle Ca(2+) release channels (ryanodine receptors) by multiple mechanisms.
    Xu L; Tripathy A; Pasek DA; Meissner G
    J Biol Chem; 1999 Nov; 274(46):32680-91. PubMed ID: 10551824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of ivermectin and midecamycin on ryanodine receptors and the Ca2+-ATPase in sarcoplasmic reticulum of rabbit and rat skeletal muscle.
    Ahern GP; Junankar PR; Pace SM; Curtis S; Mould JA; Dulhunty AF
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):313-26. PubMed ID: 9852316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle.
    Li PL; Tang WX; Valdivia HH; Zou AP; Campbell WB
    Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H208-15. PubMed ID: 11123235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological differences between the alpha and beta ryanodine receptors of fish skeletal muscle.
    O'Brien J; Valdivia HH; Block BA
    Biophys J; 1995 Feb; 68(2):471-82. PubMed ID: 7696500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of ATP, Mg2+, and redox agents on the Ca2+ dependence of RyR channels from rat brain cortex.
    Bull R; Finkelstein JP; Humeres A; Behrens MI; Hidalgo C
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C162-71. PubMed ID: 17360812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration.
    Marie V; Silva JE
    J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The skeletal muscle ryanodine receptor identified as a molecular target of [3H]azidodantrolene by photoaffinity labeling.
    Paul-Pletzer K; Palnitkar SS; Jimenez LS; Morimoto H; Parness J
    Biochemistry; 2001 Jan; 40(2):531-42. PubMed ID: 11148048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Mg(2+) in Ca(2+)-induced Ca(2+) release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine.
    Murayama T; Kurebayashi N; Ogawa Y
    Biophys J; 2000 Apr; 78(4):1810-24. PubMed ID: 10733962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.