These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 1174504)

  • 1. Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis.
    Maniatis T; Jeffrey A; van deSande H
    Biochemistry; 1975 Aug; 14(17):3787-94. PubMed ID: 1174504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific cleavage of single-stranded DNA by a Hemophilus restriction endonuclease.
    Horiuchi K; Zinder ND
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2555-8. PubMed ID: 1058473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA chain length markers and the influence of base composition on electrophoretic mobility of oligodeoxyribonucleotides in polyacrylamide-gels.
    Frank R; Köster H
    Nucleic Acids Res; 1979; 6(6):2069-87. PubMed ID: 461182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalously slow electrophoretic mobilities of DNA restriction fragments in polyacrylamide gels are not eliminated by increasing the gel pore size.
    Stellwagen A; Stellwagen NC
    Biopolymers; 1990; 30(3-4):309-24. PubMed ID: 2177663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA fragments with specific nucleotide sequences in their single-stranded termini exhibit unusual electrophoretic mobilities.
    Muiznieks I; Doerfler W
    Nucleic Acids Res; 1998 Apr; 26(8):1899-905. PubMed ID: 9518482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic evidence that single-stranded regions of one or more nucleotides dramatically increase the flexibility of DNA.
    Mills JB; Cooper JP; Hagerman PJ
    Biochemistry; 1994 Feb; 33(7):1797-803. PubMed ID: 8110781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete mobility of single-stranded DNA in non-denaturing gel electrophoresis.
    Liu Q; Scaringe WA; Sommer SS
    Nucleic Acids Res; 2000 Feb; 28(4):940-3. PubMed ID: 10648786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels.
    McDonell MW; Simon MN; Studier FW
    J Mol Biol; 1977 Feb; 110(1):119-46. PubMed ID: 845942
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrophoretic mobility of high-molecular-weight, double-stranded DNA on agarose gels.
    Bearden JC
    Gene; 1979 Jul; 6(3):221-34. PubMed ID: 478300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate molecular weight determinations of deoxyribonucleic acid restriction fragments on agarose gels.
    Stellwagen NC
    Biochemistry; 1983 Dec; 22(26):6180-5. PubMed ID: 6318809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strand separation of DNA fragments and their isolation from nondenaturing polyacrylamide gels.
    James R; Bradshaw RA
    Anal Biochem; 1984 Aug; 140(2):456-8. PubMed ID: 6486433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 5'-terminal phosphates slow migration of single-stranded DNA fragments during electrophoresis in nondenaturing acrylamide gels.
    Matyásek R
    Anal Biochem; 1992 Apr; 202(1):204-9. PubMed ID: 1621982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrophoretic mobility of double-stranded RNA in polyacrylamide gels as a function of molecular weight.
    Bozarth RF; Harley EH
    Biochim Biophys Acta; 1976 May; 432(3):329-35. PubMed ID: 1268260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electric field switching on the electrophoretic mobility of single-stranded DNA molecules in polyacrylamide gels.
    Lai E; Davi NA; Hood LE
    Electrophoresis; 1989 Jan; 10(1):65-7. PubMed ID: 2714243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid preparation of single stranded DNA from PCR products by streptavidin induced electrophoretic mobility shift.
    Pagratis NC
    Nucleic Acids Res; 1996 Sep; 24(18):3645-6. PubMed ID: 8836196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An apparent discrepancy between chain length and electrophoretic mobility of restriction fragments: a case of human mitochondrial DNA.
    Horai S; Inoue T; Matsunaga E
    Hum Genet; 1987 Jan; 75(1):73-4. PubMed ID: 3026950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping and length measurements of restriction enzyme fragments by electron microscopy.
    Keegstra W; Vereijken JM; Jansz HS
    Biochim Biophys Acta; 1977 Mar; 475(1):176-83. PubMed ID: 321023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields.
    Heiger DN; Cohen AS; Karger BL
    J Chromatogr; 1990 Sep; 516(1):33-48. PubMed ID: 1962784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small differences in electrophoretic mobility among circularly permuted sequence isomers of duck hepatitis B virus linear, single-stranded DNA.
    Tencza MG; Newbold JE
    FEMS Microbiol Lett; 1995 Jun; 129(2-3):163-7. PubMed ID: 7607397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the electrophoretic mobility and translational diffusion coefficients of DNA molecules in free solution.
    Stellwagen E; Stellwagen NC
    Electrophoresis; 2002 Aug; 23(16):2794-803. PubMed ID: 12210184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.