BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11745157)

  • 1. Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea.
    Frykman S; Leaf T; Carreras C; Licari P
    Biotechnol Bioeng; 2001 Dec; 76(4):303-10. PubMed ID: 11745157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharopolyspora erythraea-catalyzed bioconversion of 6-deoxyerythronolide B analogs for production of novel erythromycins.
    Carreras C; Frykman S; Ou S; Cadapan L; Zavala S; Woo E; Leaf T; Carney J; Burlingame M; Patel S; Ashley G; Licari P
    J Biotechnol; 2002 Jan; 92(3):217-28. PubMed ID: 11689246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precursor-directed biosynthesis of 6-deoxyerythronolide B analogues is improved by removal of the initial catalytic sites of the polyketide synthase.
    Ward SL; Desai RP; Hu Z; Gramajo H; Katz L
    J Ind Microbiol Biotechnol; 2007 Jan; 34(1):9-15. PubMed ID: 17033784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precursor-directed biosynthesis of 6-deoxyerythronolide B analogs in Streptomyces coelicolor: understanding precursor effects.
    Leaf T; Cadapan L; Carreras C; Regentin R; Ou S; Woo E; Ashley G; Licari P
    Biotechnol Prog; 2000; 16(4):553-6. PubMed ID: 10933827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of erythromycin analogs having functional groups at C-15.
    Ashley GW; Burlingame M; Desai R; Fu H; Leaf T; Licari PJ; Tran C; Abbanat D; Bush K; Macielag M
    J Antibiot (Tokyo); 2006 Jul; 59(7):392-401. PubMed ID: 17025015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining classical, genetic, and process strategies for improved precursor-directed production of 6-deoxyerythronolide B analogues.
    Desai RP; Leaf T; Hu Z; Hutchinson CR; Hong A; Byng G; Galazzo J; Licari P
    Biotechnol Prog; 2004; 20(1):38-43. PubMed ID: 14763821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea.
    Chng C; Lum AM; Vroom JA; Kao CM
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11346-51. PubMed ID: 18685110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved bioconversion of 15-fluoro-6-deoxyerythronolide B to 15-fluoro-erythromycin A by overexpression of the eryK Gene in Saccharopolyspora erythraea.
    Desai RP; Rodriguez E; Galazzo JL; Licari P
    Biotechnol Prog; 2004; 20(6):1660-5. PubMed ID: 15575696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea.
    Gaisser S; Reather J; Wirtz G; Kellenberger L; Staunton J; Leadlay PF
    Mol Microbiol; 2000 Apr; 36(2):391-401. PubMed ID: 10792725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural elucidation of a novel erythromycin, 13-cyclopentyl-13-desethyl-erythromycin B, from a recombinant Saccharopolyspora erythraea strain, NRRL 2338 pIG/1.
    Parsons IC; Everett JR; Pacey MS; Ruddock JC; Swanson AG; Thompson CM
    J Antibiot (Tokyo); 1999 Feb; 52(2):190-2. PubMed ID: 10344576
    [No Abstract]   [Full Text] [Related]  

  • 11. Production of 6-deoxy-13-cyclopropyl-erythromycin B by Saccharopolyspora erythraea NRRL 18643.
    Brown MS; Dirlam JP; McArthur HA; McCormick EL; Morse BK; Murphy PA; O'Connell TN; Pacey M; Rescek DM; Ruddock J; Wax RG
    J Antibiot (Tokyo); 1999 Aug; 52(8):742-7. PubMed ID: 10580387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea.
    Liao CH; Xu Y; Rigali S; Ye BC
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10215-24. PubMed ID: 26272095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel erythromycins from a recombinant Saccharopolyspora erythraea strain NRRL 2338 pIG1. I. Fermentation, isolation and biological activity.
    Pacey MS; Dirlam JP; Geldart RW; Leadlay PF; McArthur HA; McCormick EL; Monday RA; O'Connell TN; Staunton J; Winchester TJ
    J Antibiot (Tokyo); 1998 Nov; 51(11):1029-34. PubMed ID: 9918396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host.
    Zhang H; Wang Y; Wu J; Skalina K; Pfeifer BA
    Chem Biol; 2010 Nov; 17(11):1232-40. PubMed ID: 21095573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferases from the spinosyn biosynthetic gene cluster.
    Gaisser S; Lill R; Wirtz G; Grolle F; Staunton J; Leadlay PF
    Mol Microbiol; 2001 Sep; 41(5):1223-31. PubMed ID: 11555300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora erythraea.
    Xu Z; Liu Y; Ye BC
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interspecies complementation in Saccharopolyspora erythraea : elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new erythromycin derivatives.
    Doumith M; Legrand R; Lang C; Salas JA; Raynal MC
    Mol Microbiol; 1999 Dec; 34(5):1039-48. PubMed ID: 10594828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea.
    Karničar K; Drobnak I; Petek M; Magdevska V; Horvat J; Vidmar R; Baebler Š; Rotter A; Jamnik P; Fujs Š; Turk B; Fonovič M; Gruden K; Kosec G; Petković H
    Microb Cell Fact; 2016 Jun; 15():93. PubMed ID: 27255285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetically engineered strain of Saccharopolyspora erythraea that produces 6,12-dideoxyerythromycin A as the major fermentation product.
    Stassi D; Post D; Satter M; Jackson M; Maine G
    Appl Microbiol Biotechnol; 1998 Jun; 49(6):725-31. PubMed ID: 9684306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea.
    Chen C; Hong M; Chu J; Huang M; Ouyang L; Tian X; Zhuang Y
    Bioprocess Biosyst Eng; 2017 Feb; 40(2):201-209. PubMed ID: 27709326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.