BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1174548)

  • 1. Structural effects on the reactivity of substrates and inhibitors in the epoxidation system of Pseudomonas oleovorans.
    May SW; Schwartz RD; Abbott BJ; Zaborsky OR
    Biochim Biophys Acta; 1975 Sep; 403(1):245-55. PubMed ID: 1174548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic epoxidation: synthesis of 7,8-epoxy-1-octene, 1,2-7,8-diepoxyoctane, and 1,2-Epoxyoctane by Pseudomonas oleovorans.
    Schwartz RD; McCoy CJ
    Appl Environ Microbiol; 1976 Jan; 31(1):78-82. PubMed ID: 942210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic epoxidation. I. Alkene epoxidation by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1230-4. PubMed ID: 4341053
    [No Abstract]   [Full Text] [Related]  

  • 4. Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    J Biol Chem; 1973 Mar; 248(5):1725-30. PubMed ID: 4348547
    [No Abstract]   [Full Text] [Related]  

  • 5. Epoxidation of 1,7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane.
    Schwartz RD; McCoy CJ
    Appl Environ Microbiol; 1977 Jul; 34(1):47-9. PubMed ID: 889327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase.
    Peter S; Kinne M; Ullrich R; Kayser G; Hofrichter M
    Enzyme Microb Technol; 2013 May; 52(6-7):370-6. PubMed ID: 23608506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective epoxidation of octadiene catalyzed by an enzyme system of Pseudomonas oleovorans.
    May SW; Schwartz RD
    J Am Chem Soc; 1974 Jun; 96(12):4031-2. PubMed ID: 4854399
    [No Abstract]   [Full Text] [Related]  

  • 8. Patulin biosynthesis: epoxidation of toluquinol and gentisyl alcohol by particulate preparations from Penicillium patulum.
    Priest JW; Light RJ
    Biochemistry; 1989 Nov; 28(23):9192-200. PubMed ID: 2605253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans.
    Schwartz RD
    Appl Microbiol; 1973 Apr; 25(4):574-7. PubMed ID: 4699216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis.
    Sims P; Grover PL
    Adv Cancer Res; 1974; 20():165-274. PubMed ID: 4617500
    [No Abstract]   [Full Text] [Related]  

  • 11. Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements.
    Schwartz RD; McCoy CJ
    Appl Microbiol; 1973 Aug; 26(2):217-8. PubMed ID: 4743875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient epoxidation of unsaturated fatty acids by a hydroperoxide-dependent oxygenase.
    Blée E; Schuber F
    J Biol Chem; 1990 Aug; 265(22):12887-94. PubMed ID: 2376578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by variable stereoselective alkane hydroxylation and olefin epoxidation.
    Ng KY; Tu LC; Wang YS; Chan SI; Yu SS
    Chembiochem; 2008 May; 9(7):1116-23. PubMed ID: 18383583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unique deuterium/proton exchange during cytochrome P-450 mediated expoxidation of propene and butene.
    Groves JT; Fish KM; Avaria-Neisser GE; Imachi M; Kuczkowski RL
    Prog Clin Biol Res; 1988; 274():509-24. PubMed ID: 3406036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldrin epoxidation, a highly sensitive indicator specific for cytochrome P-450-dependent mono-oxygenase activities.
    Wolff T; Deml E; Wanders H
    Drug Metab Dispos; 1979; 7(5):301-5. PubMed ID: 40770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the cytochrome P450-mediated oxidative metabolism of the terpene alcohol linalool: indication of biological epoxidation.
    Meesters RJ; Duisken M; Hollender J
    Xenobiotica; 2007 Jun; 37(6):604-17. PubMed ID: 17614007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of dithiothreitol-dependent microsomal vitamin K quinone and vitamin K epoxide reductases inhibition of epoxide reduction by vitamin K quinone.
    Preusch PC; Suttie JW
    Biochim Biophys Acta; 1984 Mar; 798(1):141-3. PubMed ID: 6704420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further studies on the substrate specificity and inhibition of the stereospecific CS2 secondary alkylsulphohydrolase of Comamonas terrigena.
    Barrett CH; Dodgson KS; White GF
    Biochem J; 1980 Nov; 191(2):467-73. PubMed ID: 6263248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.