BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11745519)

  • 1. Resorbable polymer fibers for ligament augmentation.
    Dürselen L; Dauner M; Hierlemann H; Planck H; Claes LE; Ignatius A
    J Biomed Mater Res; 2001; 58(6):666-72. PubMed ID: 11745519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of material stiffness during degradation for constructs made of absorbable polymer fibers.
    Dürselen L; Dauner M; Hierlemann H; Planck H; Ignatius A; Claes LE
    J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):697-701. PubMed ID: 14598396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids.
    Deng M; Zhou J; Chen G; Burkley D; Xu Y; Jamiolkowski D; Barbolt T
    Biomaterials; 2005 Jul; 26(20):4327-36. PubMed ID: 15683657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligament tissue engineering: an evolutionary materials science approach.
    Laurencin CT; Freeman JW
    Biomaterials; 2005 Dec; 26(36):7530-6. PubMed ID: 16045982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submicronparticles from biodegradable polymers.
    Jobmann M; Rafler G
    Int J Pharm; 2002 Aug; 242(1-2):213-7. PubMed ID: 12176249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation.
    Cooper JA; Lu HH; Ko FK; Freeman JW; Laurencin CT
    Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation.
    Loo JS; Ooi CP; Boey FY
    Biomaterials; 2005 Apr; 26(12):1359-67. PubMed ID: 15482823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological response to a new composite polymer augmentation device used for cruciate ligament reconstruction.
    Dürselen L; Häfner M; Ignatius A; Kraft K; Hollstein E; Pokar S; Dauner M; Claes L; Friemert B
    J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):265-72. PubMed ID: 16211566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of biodegradable poly-L-lactide ligament augmentation device in experimental anterior cruciate ligament reconstruction.
    Laitinen O; Pohjonen T; Törmälä P; Saarelainen K; Vasenius J; Rokkanen P; Vainionpää S
    Arch Orthop Trauma Surg; 1993; 112(6):270-4. PubMed ID: 8123379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep loading during degradation attenuates mechanical property loss in PLGA.
    Dreher ML; Nagaraja S; Li J
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):700-8. PubMed ID: 25052133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of therapeutic irradiation on LactoSorb absorbable copolymer.
    Pietrzak WS; Gamboa M; Patel K; Sharma D; Kumar M; Eppley BL
    J Craniofac Surg; 2002 Jul; 13(4):547-53. PubMed ID: 12140421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties and in vitro degradation of bioresorbable knitted stents.
    Nuutinen JP; Välimaa T; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2002; 13(12):1313-23. PubMed ID: 12555898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone.
    Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation and in-vitro degradation of polylactide and poly(L-lactide-co-glycolide)].
    Wei Z; Liu L; Zhang M; Yang F; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):122-6. PubMed ID: 18435272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering.
    Ge Z; Goh JC; Wang L; Tan EP; Lee EH
    J Biomater Sci Polym Ed; 2005; 16(9):1179-92. PubMed ID: 16231607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.
    Felfel RM; Poocza L; Gimeno-Fabra M; Milde T; Hildebrand G; Ahmed I; Scotchford C; Sottile V; Grant DM; Liefeith K
    Biomed Mater; 2016 Feb; 11(1):015011. PubMed ID: 26836023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.