These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11745519)

  • 21. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) fibers.
    Crow BB; Borneman AF; Hawkins DL; Smith GM; Nelson KD
    Tissue Eng; 2005; 11(7-8):1077-84. PubMed ID: 16144443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo.
    Laitinen O; Törmälä P; Taurio R; Skutnabb K; Saarelainen K; Iivonen T; Vainionpää S
    Biomaterials; 1992; 13(14):1012-6. PubMed ID: 1472587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable osteosynthesis material for stabilization of midface fractures: experimental investigation in sheep.
    Bähr W; Stricker A; Gutwald R; Wellens E
    J Craniomaxillofac Surg; 1999 Feb; 27(1):51-7. PubMed ID: 10188128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents.
    Zilberman M; Nelson KD; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):792-9. PubMed ID: 15991233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Material and technical stipulations for synthetic augmentation materials].
    Contzen H
    Polim Med; 1993; 23(1-2):13-8. PubMed ID: 8415285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study on in vitro degradation behavior of a poly(glycolide-co-L-lactide) monofilament.
    Deng M; Chen G; Burkley D; Zhou J; Jamiolkowski D; Xu Y; Vetrecin R
    Acta Biomater; 2008 Sep; 4(5):1382-91. PubMed ID: 18442954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gel casting of resorbable polymers. 2. In-vitro degradation of bone graft substitutes.
    Coombes AG; Heckman JD
    Biomaterials; 1992; 13(5):297-307. PubMed ID: 1600032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction.
    Bourke SL; Kohn J; Dunn MG
    Tissue Eng; 2004; 10(1-2):43-52. PubMed ID: 15009929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of electron-beam radiation on the hydrolytic degradation behaviour of poly(lactide-co-glycolide) (PLGA).
    Loo SC; Ooi CP; Boey YC
    Biomaterials; 2005 Jun; 26(18):3809-17. PubMed ID: 15626429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioabsorbable interbody cages in a sheep cervical spine fusion model.
    Kandziora F; Pflugmacher R; Scholz M; Eindorf T; Schnake KJ; Haas NP
    Spine (Phila Pa 1976); 2004 Sep; 29(17):1845-55; discussion 1856. PubMed ID: 15534403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.
    Jain RA
    Biomaterials; 2000 Dec; 21(23):2475-90. PubMed ID: 11055295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation of the clinical and in vitro degradation characteristics of a poly(L-lactic acid): poly(glycolic acid) copolymer by mini meta-analysis.
    Pietrzak WS
    J Craniofac Surg; 2015 Jan; 26(1):281-4. PubMed ID: 25490576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of common sterilization methods on the structure and properties of poly(D,L lactic-co-glycolic acid) scaffolds.
    Shearer H; Ellis MJ; Perera SP; Chaudhuri JB
    Tissue Eng; 2006 Oct; 12(10):2717-27. PubMed ID: 17518641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A bioabsorbable plug in bone-tendon-bone reconstruction of the anterior cruciate ligament: Introduction of a novel fixation technique.
    Kousa P; Järvinen TL; Kannus P; Ahvenjärvi P; Kaikkonen A; Järvinen M
    Arthroscopy; 2001 Feb; 17(2):144-50. PubMed ID: 11172243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable polyester elastomers in tissue engineering.
    Webb AR; Yang J; Ameer GA
    Expert Opin Biol Ther; 2004 Jun; 4(6):801-12. PubMed ID: 15174963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical evaluation of titanium, biodegradable plate and screw, and cyanoacrylate glue fixation systems in craniofacial surgery.
    Gosain AK; Song L; Corrao MA; Pintar FA
    Plast Reconstr Surg; 1998 Mar; 101(3):582-91. PubMed ID: 9500375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical characterization and biocompatibility of a novel reinforced fascia patch for rotator cuff repair.
    Aurora A; Mesiha M; Tan CD; Walker E; Sahoo S; Iannotti JP; McCarron JA; Derwin KA
    J Biomed Mater Res A; 2011 Nov; 99(2):221-30. PubMed ID: 21976447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligament graft initial fixation strength using biodegradable interference screws.
    Rupp S; Seil R; Schneider A; Kohn DM
    J Biomed Mater Res; 1999; 48(1):70-4. PubMed ID: 10029152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.