BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 11745538)

  • 1. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels.
    Bryant SJ; Anseth KS
    J Biomed Mater Res; 2002 Jan; 59(1):63-72. PubMed ID: 11745538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production.
    Bryant SJ; Bender RJ; Durand KL; Anseth KS
    Biotechnol Bioeng; 2004 Jun; 86(7):747-55. PubMed ID: 15162450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ; Bryant SJ; Anseth KS
    Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development.
    Rice MA; Anseth KS
    J Biomed Mater Res A; 2004 Sep; 70(4):560-8. PubMed ID: 15307160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage.
    Bryant SJ; Anseth KS
    J Biomed Mater Res A; 2003 Jan; 64(1):70-9. PubMed ID: 12483698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach.
    Schneider MC; Lalitha Sridhar S; Vernerey FJ; Bryant SJ
    J Mater Chem B; 2020 Apr; 8(14):2775-2791. PubMed ID: 32155233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels.
    Roberts JJ; Nicodemus GD; Greenwald EC; Bryant SJ
    Clin Orthop Relat Res; 2011 Oct; 469(10):2725-34. PubMed ID: 21347817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production.
    Bryant SJ; Durand KL; Anseth KS
    J Biomed Mater Res A; 2003 Dec; 67(4):1430-6. PubMed ID: 14624532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the chondrocyte secretome in photoclickable poly(ethylene glycol) hydrogels.
    Schneider MC; Barnes CA; Bryant SJ
    Biotechnol Bioeng; 2017 Sep; 114(9):2096-2108. PubMed ID: 28436002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly(ethylene glycol) hydrogels.
    Skaalure SC; Radhakrishnan SM; Bryant SJ
    J Biomed Mater Res A; 2015 Jun; 103(6):2186-92. PubMed ID: 25205522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.
    Nicodemus GD; Skaalure SC; Bryant SJ
    Acta Biomater; 2011 Feb; 7(2):492-504. PubMed ID: 20804868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels.
    Zhao X; Papadopoulos A; Ibusuki S; Bichara DA; Saris DB; Malda J; Anseth KS; Gill TJ; Randolph MA
    BMC Musculoskelet Disord; 2016 Jun; 17():245. PubMed ID: 27255078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering.
    Dadsetan M; Szatkowski JP; Yaszemski MJ; Lu L
    Biomacromolecules; 2007 May; 8(5):1702-9. PubMed ID: 17419584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels.
    Bryant SJ; Chowdhury TT; Lee DA; Bader DL; Anseth KS
    Ann Biomed Eng; 2004 Mar; 32(3):407-17. PubMed ID: 15095815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of directed gel degradation and collagenase digestion on the integration of neocartilage produced by chondrocytes encapsulated in hydrogel carriers.
    Rice MA; Homier PM; Waters KR; Anseth KS
    J Tissue Eng Regen Med; 2008 Oct; 2(7):418-29. PubMed ID: 18727135
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Nims RJ; Cigan AD; Durney KM; Jones BK; O'Neill JD; Law WA; Vunjak-Novakovic G; Hung CT; Ateshian GA
    Tissue Eng Part A; 2017 Aug; 23(15-16):847-858. PubMed ID: 28193145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.
    Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D
    Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.
    DeKosky BJ; Dormer NH; Ingavle GC; Roatch CH; Lomakin J; Detamore MS; Gehrke SH
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1533-42. PubMed ID: 20626274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.