These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 11745571)
1. Bioactive sol-gel foams for tissue repair. Sepulveda P; Jones JR; Hench LL J Biomed Mater Res; 2002 Feb; 59(2):340-8. PubMed ID: 11745571 [TBL] [Abstract][Full Text] [Related]
2. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. Jones JR; Hench LL J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):36-44. PubMed ID: 14689494 [TBL] [Abstract][Full Text] [Related]
3. Primary osteoblast cell response to sol-gel derived bioactive glass foams. Valerio P; Guimaráes MH; Pereira MM; Leite MF; Goes AM J Mater Sci Mater Med; 2005 Sep; 16(9):851-6. PubMed ID: 16167114 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
5. A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics. Chen QZ; Li Y; Jin LY; Quinn JM; Komesaroff PA Acta Biomater; 2010 Oct; 6(10):4143-53. PubMed ID: 20447473 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
7. Fabrication, structure and biological properties of organic acid-derived sol-gel bioactive glasses. Lei B; Chen X; Wang Y; Zhao N; Du C; Fang L Biomed Mater; 2010 Oct; 5(5):054103. PubMed ID: 20876955 [TBL] [Abstract][Full Text] [Related]
8. Binary CaO-SiO(2) gel-glasses for biomedical applications. Saravanapavan P; Jones JR; Verrier S; Beilby R; Shirtliff VJ; Hench LL; Polak JM Biomed Mater Eng; 2004; 14(4):467-86. PubMed ID: 15472395 [TBL] [Abstract][Full Text] [Related]
9. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Bielby RC; Christodoulou IS; Pryce RS; Radford WJ; Hench LL; Polak JM Tissue Eng; 2004; 10(7-8):1018-26. PubMed ID: 15363159 [TBL] [Abstract][Full Text] [Related]
10. Sol-gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. de Barros Coelho M; Magalhães Pereira M J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):451-6. PubMed ID: 16047325 [TBL] [Abstract][Full Text] [Related]
11. Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures. Zhang K; Yan H; Bell DC; Stein A; Francis LF J Biomed Mater Res A; 2003 Sep; 66(4):860-9. PubMed ID: 12926039 [TBL] [Abstract][Full Text] [Related]
12. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
13. Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. Sepulveda P; Jones JR; Hench LL J Biomed Mater Res; 2001; 58(6):734-40. PubMed ID: 11745528 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Martin RA; Yue S; Hanna JV; Lee PD; Newport RJ; Smith ME; Jones JR Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1422-43. PubMed ID: 22349249 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of bioactive glass-ceramic foams mimicking human bone portions for regenerative medicine. Rainer A; Giannitelli SM; Abbruzzese F; Traversa E; Licoccia S; Trombetta M Acta Biomater; 2008 Mar; 4(2):362-9. PubMed ID: 17920344 [TBL] [Abstract][Full Text] [Related]
16. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). Saravanapavan P; Jones JR; Pryce RS; Hench LL J Biomed Mater Res A; 2003 Jul; 66(1):110-9. PubMed ID: 12833437 [TBL] [Abstract][Full Text] [Related]
17. Therapeutic bioactive microcarriers: co-delivery of growth factors and stem cells for bone tissue engineering. Perez RA; El-Fiqi A; Park JH; Kim TH; Kim JH; Kim HW Acta Biomater; 2014 Jan; 10(1):520-30. PubMed ID: 24121192 [TBL] [Abstract][Full Text] [Related]
18. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. Goel A; Kapoor S; Rajagopal RR; Pascual MJ; Kim HW; Ferreira JM Acta Biomater; 2012 Jan; 8(1):361-72. PubMed ID: 21925626 [TBL] [Abstract][Full Text] [Related]
19. Review of bioactive glass: from Hench to hybrids. Jones JR Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331 [TBL] [Abstract][Full Text] [Related]
20. In vitro kinetic investigations on the bioactivity and cytocompatibility of bioactive glasses prepared via melting and sol-gel techniques for bone regeneration applications. El-Sayed MM; Mostafa AA; Gaafar AM; El Hotaby W; Hamzawy EM; El-Okaily MS; Gamal-Eldeen AM Biomed Mater; 2017 Feb; 12(1):015029. PubMed ID: 28233761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]