These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 11745571)
21. Submicron bioactive glass tubes for bone tissue engineering. Xie J; Blough ER; Wang CH Acta Biomater; 2012 Feb; 8(2):811-9. PubMed ID: 21945829 [TBL] [Abstract][Full Text] [Related]
22. Sol-gel silica-based biomaterials and bone tissue regeneration. Arcos D; Vallet-Regí M Acta Biomater; 2010 Aug; 6(8):2874-88. PubMed ID: 20152946 [TBL] [Abstract][Full Text] [Related]
23. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Jones JR; Lin S; Yue S; Lee PD; Hanna JV; Smith ME; Newport RJ Proc Inst Mech Eng H; 2010 Dec; 224(12):1373-87. PubMed ID: 21287826 [TBL] [Abstract][Full Text] [Related]
24. Physical and cytocompatibility properties of bioactive glass-polyvinyl alcohol-sodium alginate biocomposite foams prepared via sol-gel processing for trabecular bone regeneration. Mishra R; Basu B; Kumar A J Mater Sci Mater Med; 2009 Dec; 20(12):2493-500. PubMed ID: 19588233 [TBL] [Abstract][Full Text] [Related]
25. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric. Seol YJ; Kim KH; Kim IA; Rhee SH J Biomed Mater Res A; 2010 Aug; 94(2):649-59. PubMed ID: 20213814 [TBL] [Abstract][Full Text] [Related]
26. Investigation of Osteoinductive Effects of Different Compositions of Bioactive Glass Nanoparticles for Bone Tissue Engineering. Tavakolizadeh A; Ahmadian M; Fathi MH; Doostmohammadi A; Seyedjafari E; Ardeshirylajimi A ASAIO J; 2017; 63(4):512-517. PubMed ID: 28033183 [TBL] [Abstract][Full Text] [Related]
27. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
28. Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release. Baino F; Fiorilli S; Mortera R; Onida B; Saino E; Visai L; Verné E; Vitale-Brovarone C J Appl Biomater Funct Mater; 2012 Jun; 10(1):12-21. PubMed ID: 22367684 [TBL] [Abstract][Full Text] [Related]
29. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Wu ZY; Hill RG; Yue S; Nightingale D; Lee PD; Jones JR Acta Biomater; 2011 Apr; 7(4):1807-16. PubMed ID: 21130188 [TBL] [Abstract][Full Text] [Related]
30. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Singh BN; Pramanik K Biofabrication; 2017 Mar; 9(1):015028. PubMed ID: 28332482 [TBL] [Abstract][Full Text] [Related]
31. In vivo evaluation of bioactive glass foams associated with platelet-rich plasma in bone defects. Dutra CE; Pereira MM; Serakides R; Rezende CM J Tissue Eng Regen Med; 2008 Jun; 2(4):221-7. PubMed ID: 18493909 [TBL] [Abstract][Full Text] [Related]
32. Influence of composition and surface characteristics on the in vitro bioactivity of SiO(2)-CaO-P(2)O(5)-MgO sol-gel glasses. Pérez-Pariente J; Balas F; Román J; Salinas AJ; Vallet-Regí M J Biomed Mater Res; 1999 Nov; 47(2):170-5. PubMed ID: 10449627 [TBL] [Abstract][Full Text] [Related]
33. Protein interactions with nanoporous sol-gel derived bioactive glasses. Lin S; Van den Bergh W; Baker S; Jones JR Acta Biomater; 2011 Oct; 7(10):3606-15. PubMed ID: 21757036 [TBL] [Abstract][Full Text] [Related]
34. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528 [TBL] [Abstract][Full Text] [Related]
36. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
37. Gel-derived materials of a CaO-P(2)O(5)-SiO(2) system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. Laczka M; Cholewa-Kowalska K; Laczka-Osyczka A; Tworzydlo M; Turyna B J Biomed Mater Res; 2000 Dec; 52(4):601-12. PubMed ID: 11033542 [TBL] [Abstract][Full Text] [Related]
38. Macroporous microbeads containing apatite-modified mesoporous bioactive glass nanofibres for bone tissue engineering applications. Hsu FY; Hsu HW; Chang YH; Yu JL; Rau LR; Tsai SW Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():346-354. PubMed ID: 29752107 [TBL] [Abstract][Full Text] [Related]
39. In vivo evaluation of hydroxyapatite foams. Sepulveda P; Bressiani AH; Bressiani JC; Meseguer L; König B J Biomed Mater Res; 2002 Dec; 62(4):587-92. PubMed ID: 12221707 [TBL] [Abstract][Full Text] [Related]
40. Sol-gel synthesis of quaternary (P2O5)55-(CaO)25-(Na2O)(20-x)-(TiO2) x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15). Foroutan F; Walters NJ; Owens GJ; Mordan NJ; Kim HW; de Leeuw NH; Knowles JC Biomed Mater; 2015 Aug; 10(4):045025. PubMed ID: 26306553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]