These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11745576)

  • 1. Visible-light-induced surface graft polymerization via camphorquinone impregnation technique.
    Ziani-Cherif H; Abe Y; Imachi K; Matsuda T
    J Biomed Mater Res; 2002 Feb; 59(2):386-9. PubMed ID: 11745576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface photograft polymerization on segmented polyurethane using the iniferter technique.
    Lee HJ; Matsuda T
    J Biomed Mater Res; 1999 Dec; 47(4):564-7. PubMed ID: 10497292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification and photograft polymerization upon expanded poly(tetrafluoroethylene).
    Noh I; Goodman SL; Hubbell JA
    J Biomater Sci Polym Ed; 1998; 9(5):407-26. PubMed ID: 9648024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell micropatterning using photopolymerization with a liquid crystal device commercial projector.
    Itoga K; Yamato M; Kobayashi J; Kikuchi A; Okano T
    Biomaterials; 2004 May; 25(11):2047-53. PubMed ID: 14741619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility.
    Fairbanks BD; Schwartz MP; Bowman CN; Anseth KS
    Biomaterials; 2009 Dec; 30(35):6702-7. PubMed ID: 19783300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of polymerized mixed heparin/albumin surface layer and cellular adhesional responses.
    Magoshi T; Matsuda T
    Biomacromolecules; 2002; 3(5):976-83. PubMed ID: 12217043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoactivated dentin bonding with N-phenyliminodiacetic acid.
    Code JE; Antonucci JM; Bennett PS; Schumacher GE
    Dent Mater; 1997 Jul; 13(4):252-7. PubMed ID: 11696905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer brushes interfacing blood as a route toward high performance blood contacting devices.
    Surman F; Riedel T; Bruns M; Kostina NY; Sedláková Z; Rodriguez-Emmenegger C
    Macromol Biosci; 2015 May; 15(5):636-46. PubMed ID: 25644402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory-scale mass production of a multi-micropatterned grafted surface with different polymer regions.
    Nakayama Y; Anderson JM; Matsuda T
    J Biomed Mater Res; 2000 Sep; 53(5):584-91. PubMed ID: 10984708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes.
    Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials.
    Lin X; Fukazawa K; Ishihara K
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17489-98. PubMed ID: 26202385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior.
    Burkoth AK; Burdick J; Anseth KS
    J Biomed Mater Res; 2000 Sep; 51(3):352-9. PubMed ID: 10880076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer.
    Morimoto N; Watanabe A; Iwasaki Y; Akiyoshi K; Ishihara K
    Biomaterials; 2004 Oct; 25(23):5353-61. PubMed ID: 15130720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force measurement for antigen-antibody interaction by atomic force microscopy using a photograft-polymer spacer.
    Idiris A; Kidoaki S; Usui K; Maki T; Suzuki H; Ito M; Aoki M; Hayashizaki Y; Matsuda T
    Biomacromolecules; 2005; 6(5):2776-84. PubMed ID: 16153118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photopolymerization of N,N-dimethylaminobenzyl alcohol as amine co-initiator for light-cured dental resins.
    Schroeder WF; Cook WD; Vallo CI
    Dent Mater; 2008 May; 24(5):686-93. PubMed ID: 17804051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions.
    Cai X; Yuan J; Chen S; Li P; Li L; Shen J
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():42-8. PubMed ID: 24433885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile strategy for the modification of polyethylene substrates with non-fouling, bioactive poly(poly(ethylene glycol) methacrylate) brushes.
    Lavanant L; Pullin B; Hubbell JA; Klok HA
    Macromol Biosci; 2010 Jan; 10(1):101-8. PubMed ID: 19890949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microplates with adaptive surfaces.
    Akbulut M; Lakshmi D; Whitcombe MJ; Piletska EV; Chianella I; Güven O; Piletsky SA
    ACS Comb Sci; 2011 Nov; 13(6):646-52. PubMed ID: 21888414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on a new strategy for surface modification of polymeric biomaterials.
    Aldenhoff YB; Koole LH
    J Biomed Mater Res; 1995 Aug; 29(8):917-28. PubMed ID: 7593035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.