These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 11745721)
1. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. Elvassore N; Bertucco A; Caliceti P J Pharm Sci; 2001 Oct; 90(10):1628-36. PubMed ID: 11745721 [TBL] [Abstract][Full Text] [Related]
2. Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro. Matsumoto J; Nakada Y; Sakurai K; Nakamura T; Takahashi Y Int J Pharm; 1999 Aug; 185(1):93-101. PubMed ID: 10425369 [TBL] [Abstract][Full Text] [Related]
3. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery. Sheshala R; Peh KK; Darwis Y Drug Dev Ind Pharm; 2009 Nov; 35(11):1364-74. PubMed ID: 19832637 [TBL] [Abstract][Full Text] [Related]
4. In vivo evaluation of a conjugated poly(lactide-ethylene glycol) nanoparticle depot formulation for prolonged insulin delivery in the diabetic rabbit model. Tomar L; Tyagi C; Kumar M; Kumar P; Singh H; Choonara YE; Pillay V Int J Nanomedicine; 2013; 8():505-20. PubMed ID: 23429428 [TBL] [Abstract][Full Text] [Related]
5. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Yeh MK J Microencapsul; 2000; 17(6):743-56. PubMed ID: 11063421 [TBL] [Abstract][Full Text] [Related]
6. Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Gref R; Quellec P; Sanchez A; Calvo P; Dellacherie E; Alonso MJ Eur J Pharm Biopharm; 2001 Mar; 51(2):111-8. PubMed ID: 11226817 [TBL] [Abstract][Full Text] [Related]
7. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
8. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727 [TBL] [Abstract][Full Text] [Related]
9. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. Salmaso S; Elvassore N; Bertucco A; Caliceti P J Pharm Sci; 2009 Feb; 98(2):640-50. PubMed ID: 18484622 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of biodegradable poly(l-lactide)/poly(ethylene glycol) microcapsules containing erythromycin by emulsion solvent evaporation technique. Park SJ; Kim SH J Colloid Interface Sci; 2004 Mar; 271(2):336-41. PubMed ID: 14972610 [TBL] [Abstract][Full Text] [Related]
11. 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Ocal H; Arica-Yegin B; Vural I; Goracinova K; Caliş S Drug Dev Ind Pharm; 2014 Apr; 40(4):560-7. PubMed ID: 23596973 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel. Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600 [TBL] [Abstract][Full Text] [Related]
13. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel. Dong Y; Feng SS J Biomed Mater Res A; 2006 Jul; 78(1):12-9. PubMed ID: 16596586 [TBL] [Abstract][Full Text] [Related]
14. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Perez C; Sanchez A; Putnam D; Ting D; Langer R; Alonso MJ J Control Release; 2001 Jul; 75(1-2):211-24. PubMed ID: 11451511 [TBL] [Abstract][Full Text] [Related]
15. Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Haggag YA; Faheem AM; Tambuwala MM; Osman MA; El-Gizawy SA; O'Hagan B; Irwin N; McCarron PA Pharm Dev Technol; 2018 Apr; 23(4):370-381. PubMed ID: 28285551 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) nanogels for controlled release of naltrexone. Asadi H; Rostamizadeh K; Salari D; Hamidi M Int J Pharm; 2011 Sep; 416(1):356-64. PubMed ID: 21729744 [TBL] [Abstract][Full Text] [Related]
17. Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression. Sirc J; Hampejsova Z; Trnovska J; Kozlik P; Hrib J; Hobzova R; Zajicova A; Holan V; Bosakova Z Pharm Res; 2017 Jul; 34(7):1391-1401. PubMed ID: 28405914 [TBL] [Abstract][Full Text] [Related]
18. Amphotericin B-loaded poly(ethylene glycol)-poly(lactide) micelles: preparation, freeze-drying, and in vitro release. Yang ZL; Li XR; Yang KW; Liu Y J Biomed Mater Res A; 2008 May; 85(2):539-46. PubMed ID: 17729259 [TBL] [Abstract][Full Text] [Related]
19. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. Xiong XY; Li YP; Li ZL; Zhou CL; Tam KC; Liu ZY; Xie GX J Control Release; 2007 Jul; 120(1-2):11-7. PubMed ID: 17509718 [TBL] [Abstract][Full Text] [Related]
20. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Haggag Y; Abdel-Wahab Y; Ojo O; Osman M; El-Gizawy S; El-Tanani M; Faheem A; McCarron P Int J Pharm; 2016 Feb; 499(1-2):236-246. PubMed ID: 26746800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]