These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11745744)

  • 1. Characterization of captopril sublingual permeation: determination of preferred routes and mechanisms.
    Chetty DJ; Chen LL; Chien YW
    J Pharm Sci; 2001 Nov; 90(11):1868-77. PubMed ID: 11745744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Lipophilicity and Drug Ionization on Permeation Across Porcine Sublingual Mucosa.
    Goswami T; Li X; Jasti BR
    AAPS PharmSciTech; 2017 Jan; 18(1):175-181. PubMed ID: 26931443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of pH on the buccal and sublingual absorption of captopril.
    McElnay JC; al-Furaih TA; Hughes CM; Scott MG; Elborn JS; Nicholls DP
    Eur J Clin Pharmacol; 1995; 48(5):373-9. PubMed ID: 8641325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanistic analysis to characterize oramucosal permeation properties.
    Chen LL; Chetty DJ; Chien YW
    Int J Pharm; 1999 Jul; 184(1):63-72. PubMed ID: 10425352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transbuccal delivery of acyclovir: I. In vitro determination of routes of buccal transport.
    Shojaei AH; Berner B; Xiaoling L
    Pharm Res; 1998 Aug; 15(8):1182-8. PubMed ID: 9706047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on in vitro permeation of ondansetron hydrochloride across porcine buccal mucosa.
    Mashru RC; Sutariya VB; Sankalia MG; Sankalia JM
    Pharm Dev Technol; 2005; 10(2):241-7. PubMed ID: 15926673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transbuccal delivery of lamotrigine across porcine buccal mucosa: in vitro determination of routes of buccal transport.
    Mashru R; Sutariya V; Sankalia M; Sankalia J
    J Pharm Pharm Sci; 2005 Feb; 8(1):54-62. PubMed ID: 15946598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro permeation of tetramethylpyrazine across porcine buccal mucosa.
    Liu C; Xu HN; Li XL
    Acta Pharmacol Sin; 2002 Sep; 23(9):792-6. PubMed ID: 12230946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Potential for Delivery of Irinotecan via the Buccal Route: Physicochemical Characterization and In Vitro Permeation Assessment Across Porcine Buccal Mucosa.
    Shah V; Bellantone RA; Taft DR
    AAPS PharmSciTech; 2017 Apr; 18(3):867-874. PubMed ID: 27363416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buccal permeation of buspirone: mechanistic studies on transport pathways.
    Birudaraj R; Berner B; Shen S; Li X
    J Pharm Sci; 2005 Jan; 94(1):70-8. PubMed ID: 15761931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of self-nanoemulsifying drug delivery systems using multivariate methods to optimize permeability of captopril oral films.
    Talekar SD; Haware RV; Dave RH
    Eur J Pharm Sci; 2019 Mar; 130():215-224. PubMed ID: 30716381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation and characterization of a captopril ethyl ester drug-in-adhesive-type patch for percutaneous absorption.
    Gullick DR; Pugh WJ; Ingram MJ; Cox PA; Moss GP
    Drug Dev Ind Pharm; 2010 Aug; 36(8):926-32. PubMed ID: 20184419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical efficacy of sublingual captopril in the treatment of hypertensive urgency.
    Kazerani H; Hajimoradi B; Amini A; Naseri MH; Moharamzad Y
    Singapore Med J; 2009 Apr; 50(4):400-2. PubMed ID: 19421685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HO-1-u-1 model for screening sublingual drug delivery--influence of pH, osmolarity and permeation enhancer.
    Wang Y; Zuo Z; Chow MS
    Int J Pharm; 2009 Mar; 370(1-2):68-74. PubMed ID: 19071203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical evaluation of permeation enhancers for oral mucosal drug delivery.
    Sohi H; Ahuja A; Ahmad FJ; Khar RK
    Drug Dev Ind Pharm; 2010 Mar; 36(3):254-82. PubMed ID: 19663558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico model of drug permeability across sublingual mucosa.
    Goswami T; Kokate A; Jasti BR; Li X
    Arch Oral Biol; 2013 May; 58(5):545-51. PubMed ID: 23123066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transbuccal permeation of a nucleoside analog, dideoxycytidine: effects of menthol as a permeation enhancer.
    Shojaei AH; Khan M; Lim G; Khosravan R
    Int J Pharm; 1999 Dec; 192(2):139-46. PubMed ID: 10567745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel application of electrospinning technique in sublingual membrane: characterization, permeation and in vivo study.
    Chen J; Wang X; Zhang W; Yu S; Fan J; Cheng B; Yang X; Pan W
    Drug Dev Ind Pharm; 2016 Aug; 42(8):1365-74. PubMed ID: 26716771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rabbit model for sublingual drug delivery: comparison with human pharmacokinetic studies of propranolol, verapamil and captopril.
    Dali MM; Moench PA; Mathias NR; Stetsko PI; Heran CL; Smith RL
    J Pharm Sci; 2006 Jan; 95(1):37-44. PubMed ID: 16307454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mucoadhesive polymers-based film as a carrier system for sublingual delivery of glutathione.
    Chen G; Bunt C; Wen J
    J Pharm Pharmacol; 2015 Jan; 67(1):26-34. PubMed ID: 25303221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.