These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 11745754)
1. Evaluation of hydration states of protein in freeze-dried amorphous sugar matrix. Imamura K; Iwai M; Ogawa T; Sakiyama T; Nakanishi K J Pharm Sci; 2001 Dec; 90(12):1955-63. PubMed ID: 11745754 [TBL] [Abstract][Full Text] [Related]
2. Effects of types of sugar on the stabilization of protein in the dried state. Imamura K; Ogawa T; Sakiyama T; Nakanishi K J Pharm Sci; 2003 Feb; 92(2):266-74. PubMed ID: 12532376 [TBL] [Abstract][Full Text] [Related]
3. The effect of temperature on water vapor sorption by some amorphous pharmaceutical sugars. Hancock BC; Dalton CR Pharm Dev Technol; 1999 Jan; 4(1):125-31. PubMed ID: 10027221 [TBL] [Abstract][Full Text] [Related]
4. Influence of compression on water sorption, glass transition, and enthalpy relaxation behavior of freeze-dried amorphous sugar matrices. Imamura K; Kagotani R; Nomura M; Tanaka K; Kinugawa K; Nakanishi K Int J Pharm; 2011 Apr; 408(1-2):76-83. PubMed ID: 21291973 [TBL] [Abstract][Full Text] [Related]
5. Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. Taylor LS; Zografi G J Pharm Sci; 1998 Dec; 87(12):1615-21. PubMed ID: 10189276 [TBL] [Abstract][Full Text] [Related]
6. Improving the physical stability of freeze-dried amorphous sugar matrices by compression at several hundreds MPa. Kagotani R; Kinugawa K; Nomura M; Imanaka H; Ishida N; Imamura K J Pharm Sci; 2013 Jul; 102(7):2187-97. PubMed ID: 23625861 [TBL] [Abstract][Full Text] [Related]
7. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Tonnis WF; Mensink MA; de Jager A; van der Voort Maarschalk K; Frijlink HW; Hinrichs WL Mol Pharm; 2015 Mar; 12(3):684-94. PubMed ID: 25581526 [TBL] [Abstract][Full Text] [Related]
8. Stabilizing effect of four types of disaccharide on the enzymatic activity of freeze-dried lactate dehydrogenase: step by step evaluation from freezing to storage. Kawai K; Suzuki T Pharm Res; 2007 Oct; 24(10):1883-90. PubMed ID: 17486434 [TBL] [Abstract][Full Text] [Related]
9. The effect of water plasticization on the molecular mobility and crystallization tendency of amorphous disaccharides. Heljo VP; Nordberg A; Tenho M; Virtanen T; Jouppila K; Salonen J; Maunu SL; Juppo AM Pharm Res; 2012 Oct; 29(10):2684-97. PubMed ID: 22203327 [TBL] [Abstract][Full Text] [Related]
10. Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Lodato P; Se govia de Huergo M; Buera MP Appl Microbiol Biotechnol; 1999 Aug; 52(2):215-20. PubMed ID: 10499261 [TBL] [Abstract][Full Text] [Related]
11. Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols. Kadoya S; Fujii K; Izutsu K; Yonemochi E; Terada K; Yomota C; Kawanishi T Int J Pharm; 2010 Apr; 389(1-2):107-13. PubMed ID: 20097277 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? Chang L; Shepherd D; Sun J; Ouellette D; Grant KL; Tang XC; Pikal MJ J Pharm Sci; 2005 Jul; 94(7):1427-44. PubMed ID: 15920775 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying. Imamura K; Murai K; Korehisa T; Shimizu N; Yamahira R; Matsuura T; Tada H; Imanaka H; Ishida N; Nakanishi K J Pharm Sci; 2014 Jun; 103(6):1628-37. PubMed ID: 24797557 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of hydrogen bond formation between sugar and polymer in freeze-dried mixtures under different rehumidification conditions and its impact on the glass transition temperature. Imamura K; Asano Y; Maruyama Y; Yokoyama T; Nomura M; Ogawa S; Nakanishi K J Pharm Sci; 2008 Mar; 97(3):1301-12. PubMed ID: 17683061 [TBL] [Abstract][Full Text] [Related]
15. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying. Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123 [TBL] [Abstract][Full Text] [Related]
16. A solid-state NMR study of protein mobility in lyophilized protein-sugar powders. Lam YH; Bustami R; Phan T; Chan HK; Separovic F J Pharm Sci; 2002 Apr; 91(4):943-51. PubMed ID: 11948532 [TBL] [Abstract][Full Text] [Related]
17. Reduced protein adsorption at solid interfaces by sugar excipients. Wendorf JR; Radke CJ; Blanch HW Biotechnol Bioeng; 2004 Sep; 87(5):565-73. PubMed ID: 15352054 [TBL] [Abstract][Full Text] [Related]
19. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability. Mensink MA; Van Bockstal PJ; Pieters S; De Meyer L; Frijlink HW; van der Voort Maarschalk K; Hinrichs WL; De Beer T Int J Pharm; 2015 Dec; 496(2):792-800. PubMed ID: 26608621 [TBL] [Abstract][Full Text] [Related]
20. Physical Stability of Freeze-Dried Isomalt Diastereomer Mixtures. Koskinen AK; Fraser-Miller SJ; Bøtker JP; Heljo VP; Barnsley JE; Gordon KC; Strachan CJ; Juppo AM Pharm Res; 2016 Jul; 33(7):1752-68. PubMed ID: 27059921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]