BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11746386)

  • 1. 3-Ureidopropionate contributes to the neuropathology of 3-ureidopropionase deficiency and severe propionic aciduria: a hypothesis.
    Kölker S; Okun JG; Hörster F; Assmann B; Ahlemeyer B; Kohlmüller D; Exner-Camps S; Mayatepek E; Krieglstein J; Hoffmann GF
    J Neurosci Res; 2001 Nov; 66(4):666-73. PubMed ID: 11746386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in d-2-hydroxyglutaric aciduria.
    Kölker S; Pawlak V; Ahlemeyer B; Okun JG; Hörster F; Mayatepek E; Krieglstein J; Hoffmann GF; Köhr G
    Eur J Neurosci; 2002 Jul; 16(1):21-8. PubMed ID: 12153528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide-dependent damage to neuronal mitochondria involves the NMDA receptor.
    Stewart VC; Heslegrave AJ; Brown GC; Clark JB; Heales SJ
    Eur J Neurosci; 2002 Feb; 15(3):458-64. PubMed ID: 11876773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential postreceptor signaling events triggered by excitotoxic stimulation of different ionotropic glutamate receptors in retinal neurons.
    Santos AE; Carvalho AL; Lopes MC; Carvalho AP
    J Neurosci Res; 2001 Nov; 66(4):643-55. PubMed ID: 11746384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca(2+) and Na(+) dependence of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons.
    Kölker S; Köhr G; Ahlemeyer B; Okun JG; Pawlak V; Hörster F; Mayatepek E; Krieglstein J; Hoffmann GF
    Pediatr Res; 2002 Aug; 52(2):199-206. PubMed ID: 12149496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons.
    Fatokun AA; Smith RA; Stone TW
    Brain Res; 2008 Jun; 1215():200-7. PubMed ID: 18486115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-type calcium channels reduce ROS generation in cerebellar granule cells following kainate exposure.
    Leski ML; Hassinger LC; Valentine SL; Baer JD; Coyle JT
    Synapse; 2002 Jan; 43(1):30-41. PubMed ID: 11746731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for neuroprotection against L-trans-2,4-pyrrolidine dicarboxylate-induced neuronal damage during energy impairment in vitro.
    García O; Massieu L
    J Neurosci Res; 2001 May; 64(4):418-28. PubMed ID: 11340649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced expression of RNase L as a novel intracellular signal generated by NMDA receptors in mouse cortical neurons.
    Sugiyama C; Kuramoto N; Nagashima R; Yoneyama M; Ogita K
    Neurochem Int; 2008 Sep; 53(3-4):71-8. PubMed ID: 18585418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mild mitochondrial inhibition in vivo enhances glutamate-induced neuronal damage through calpain but not caspase activation: role of ionotropic glutamate receptors.
    Del Río P; Massieu L
    Exp Neurol; 2008 Jul; 212(1):179-88. PubMed ID: 18495118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative neuronal death caused by glutamate uptake inhibition in cultured hippocampal neurons.
    Himi T; Ikeda M; Yasuhara T; Murota SI
    J Neurosci Res; 2003 Mar; 71(5):679-88. PubMed ID: 12584726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons.
    Almeida A; Bolaños JP
    J Neurochem; 2001 Apr; 77(2):676-90. PubMed ID: 11299330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain oxidation is an initial process in sleep induction.
    Ikeda M; Ikeda-Sagara M; Okada T; Clement P; Urade Y; Nagai T; Sugiyama T; Yoshioka T; Honda K; Inoué S
    Neuroscience; 2005; 130(4):1029-40. PubMed ID: 15652998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?
    Beal MF
    Ann Neurol; 1992 Feb; 31(2):119-30. PubMed ID: 1349466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and mitochondrial changes in glutamate-induced HT4 neuronal cell death.
    Tirosh O; Sen CK; Roy S; Packer L
    Neuroscience; 2000; 97(3):531-41. PubMed ID: 10828535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic effect of L-2-chloropropionate on cultured rat cerebellar granule cells is ameliorated after inhibition of reactive oxygen species formation.
    Myhre O; Bjugan B; Fonnum F
    J Neurosci Res; 2001 Dec; 66(5):992-7. PubMed ID: 11746428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of N-methyl-D-aspartate glutamate receptors and mitochondrial calcium overload.
    Lee WT; Yin HS; Shen YZ
    Neuroscience; 2002; 112(3):707-16. PubMed ID: 12074912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Death of septal cholinergic neurons produced by chronic exposure to glutamate is prevented by the noncompetitive NMDA receptor/channel antagonist, MK-801: role of nerve growth factor and nitric oxide.
    Michel PP; Agid Y
    J Neurosci Res; 1995 Apr; 40(6):764-75. PubMed ID: 7629890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of calcineurin in glutamate-induced mitochondrial dynamics in neurons.
    Han XJ; Lu YF; Li SA; Tomizawa K; Takei K; Matsushita M; Matsui H
    Neurosci Res; 2008 Jan; 60(1):114-9. PubMed ID: 18045716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.