BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11746402)

  • 1. Preischemic hyperglycemia-aggravated damage: evidence that lactate utilization is beneficial and glucose-induced corticosterone release is detrimental.
    Schurr A; Payne RS; Miller JJ; Tseng MT
    J Neurosci Res; 2001 Dec; 66(5):782-9. PubMed ID: 11746402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glucose paradox of cerebral ischemia: evidence for corticosterone involvement.
    Payne RS; Tseng MT; Schurr A
    Brain Res; 2003 May; 971(1):9-17. PubMed ID: 12691832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia.
    Schurr A; Payne RS; Miller JJ; Tseng MT; Rigor BM
    Brain Res; 2001 Mar; 895(1-2):268-72. PubMed ID: 11259789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bench-to-bedside review: a possible resolution of the glucose paradox of cerebral ischemia.
    Schurr A
    Crit Care; 2002 Aug; 6(4):330-4. PubMed ID: 12225609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats.
    Wagner SR; Lanier WL
    Anesthesiology; 1994 Dec; 81(6):1516-26. PubMed ID: 7992921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat.
    Vannucci RC; Brucklacher RM; Vannucci SJ
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1026-33. PubMed ID: 8784248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time ischemic condition monitoring in normoglycemic and hyperglycemic rats.
    Choi S; Kang SW; Lee GJ; Choi SK; Chae SJ; Park HK; Chung JH
    Physiol Meas; 2010 Mar; 31(3):439-50. PubMed ID: 20150688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticosterone-aggravated ischemic neuronal damage in vitro is relieved by vanadate.
    Payne RS; Schurr A
    Neuroreport; 2001 May; 12(6):1261-3. PubMed ID: 11338203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glucose paradox in cerebral ischemia. New insights.
    Schurr A; Payne RS; Tseng MT; Miller JJ; Rigor BM
    Ann N Y Acad Sci; 1999; 893():386-90. PubMed ID: 10672274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose-1,6-bisphosphate and fructose-2,6-bisphosphate do not influence brain carbohydrate or high-energy phosphate metabolism in a rat model of forebrain ischemia.
    Hofer RE; Wagner SR; Pasternak JJ; Albrecht RF; Gallagher WJ; Lanier WL
    J Neurosurg Anesthesiol; 2009 Jan; 21(1):31-9. PubMed ID: 19098621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose but not lactate in combination with acidosis aggravates ischemic neuronal death in vitro.
    Cronberg T; Rytter A; Asztély F; Söder A; Wieloch T
    Stroke; 2004 Mar; 35(3):753-7. PubMed ID: 14963271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of hypoxia-induced injury in cultured rat astrocytes by high levels of glucose.
    Kelleher JA; Chan PH; Chan TY; Gregory GA
    Stroke; 1993 Jun; 24(6):855-63. PubMed ID: 8506557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels.
    Widmer H; Abiko H; Faden AI; James TL; Weinstein PR
    J Cereb Blood Flow Metab; 1992 May; 12(3):456-68. PubMed ID: 1569139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preischemic hyperglycemia enhances postischemic depression of cerebral metabolic rate.
    Kozuka M; Smith ML; Siesjö BK
    J Cereb Blood Flow Metab; 1989 Aug; 9(4):478-90. PubMed ID: 2738114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothermia ameliorates ischemic brain damage and suppresses the release of extracellular amino acids in both normo- and hyperglycemic subjects.
    Li PA; He QP; Miyashita H; Howllet W; Siesjö BK; Shuaib A
    Exp Neurol; 1999 Jul; 158(1):242-53. PubMed ID: 10448438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the effects of lactate transport inhibition, pyruvate, glucose and glutamine on amino acid, lactate and glucose release from the ischemic rat cerebral cortex.
    Phillis JW; Ren J; O'Regan MH
    J Neurochem; 2001 Jan; 76(1):247-57. PubMed ID: 11145998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further studies on the effects of topical lactate on amino acid efflux from the ischemic rat cortex.
    Cassady CJ; Phillis JW; O'Regan MH
    Brain Res; 2001 May; 901(1-2):30-7. PubMed ID: 11368947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral metabolic responses of hyperglycemic immature rats to hypoxia-ischemia.
    Vannucci RC; Vasta F; Vannucci SJ
    Pediatr Res; 1987 Jun; 21(6):524-9. PubMed ID: 3601471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why does acute hyperglycemia worsen the outcome of transient focal cerebral ischemia? Role of corticosteroids, inflammation, and protein O-glycosylation.
    Martín A; Rojas S; Chamorro A; Falcón C; Bargalló N; Planas AM
    Stroke; 2006 May; 37(5):1288-95. PubMed ID: 16601221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic chronic hyperglycemia and cerebral pH recovery following global ischemia in dogs.
    Sieber FE; Koehler RC; Brown PR; Eleff SM; Traystman RJ
    Stroke; 1994 Jul; 25(7):1449-55. PubMed ID: 8023362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.