These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 11746419)

  • 21. Glutamate metabolic pathways and retinal function.
    Bui BV; Hu RG; Acosta ML; Donaldson P; Vingrys AJ; Kalloniatis M
    J Neurochem; 2009 Oct; 111(2):589-99. PubMed ID: 19702659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition by cycloserine of mitochondrial and cytosolic aspartate aminotransferase in isolated rat hepatocytes.
    Janski AM; Cornell NW
    Biochem J; 1981 Mar; 194(3):1027-30. PubMed ID: 7306013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of amino acids in Ascaridia galli: transamination.
    Singh G; Srivastava VM
    Z Parasitenkd; 1983; 69(6):783-8. PubMed ID: 6140798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture.
    Bixel M; Shimomura Y; Hutson S; Hamprecht B
    J Histochem Cytochem; 2001 Mar; 49(3):407-18. PubMed ID: 11181743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of aspartate on complexes between glutamate dehydrogenase and various aminotransferases.
    Fahien LA; Hsu SL; Kmiotek E
    J Biol Chem; 1977 Feb; 252(4):1250-6. PubMed ID: 14147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Irreversible inactivation of aspartate aminotransferase by 2-oxoglutaconic acid and its dimethyl ester.
    Kato Y; Asano Y; Makar TK; Cooper AJ
    J Biochem; 1996 Sep; 120(3):531-9. PubMed ID: 8902617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of mitochondrial transamination in branched chain amino acid metabolism.
    Hutson SM; Fenstermacher D; Mahar C
    J Biol Chem; 1988 Mar; 263(8):3618-25. PubMed ID: 3346211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Possible mechanism for the decrease of mitochondrial aspartate aminotransferase activity in ischemic and hypoxic rat retinas.
    Endo S; Ishiguro S; Tamai M
    Biochim Biophys Acta; 1999 Jul; 1450(3):385-96. PubMed ID: 10395949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of glutamate analogues by enzymatic transamination.
    Gefflaut T; Assaf Z; Sancelme M
    Methods Mol Biol; 2012; 794():55-72. PubMed ID: 21956556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain.
    Cooper AJ; Jeitner TM
    Biomolecules; 2016 Mar; 6(2):. PubMed ID: 27023624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aspartate aminotransferase and glutaminase activities in rat olfactory bulb and cochlear nucleus; comparisons with retina and with concentrations of substrate and product amino acids.
    Godfrey DA; Ross CD; Parli JA; Carlson L
    Neurochem Res; 1994 Jun; 19(6):693-703. PubMed ID: 7915016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective inhibition of alanine aminotransferase and aspartate aminotransferase in rat hepatocytes.
    Cornell NW; Zuurendonk PF; Kerich MJ; Straight CB
    Biochem J; 1984 Jun; 220(3):707-16. PubMed ID: 6466297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group.
    Lieth E; LaNoue KF; Antonetti DA; Ratz M
    Exp Eye Res; 2000 Jun; 70(6):723-30. PubMed ID: 10843776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short- and long-term enzymatic regulation secondary to metabolic insult in the rat retina.
    Acosta ML; Kalloniatis M
    J Neurochem; 2005 Mar; 92(6):1350-62. PubMed ID: 15748154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria.
    Kosenko E; Felipo V; Montoliu C; Grisolía S; Kaminsky Y
    Metab Brain Dis; 1997 Mar; 12(1):69-82. PubMed ID: 9101539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of acetylcholine on aminotransferase and dehydrogenase activity in the mitochondrial fraction of the brain].
    Nilova NS
    Ukr Biokhim Zh; 1973; 45(6):688-92. PubMed ID: 4791111
    [No Abstract]   [Full Text] [Related]  

  • 37. The capacity of the malate-aspartate shuttle differs between periportal and perivenous hepatocytes from rats.
    Shiota M; Hiramatsu M; Fujimoto Y; Moriyama M; Kimura K; Ohta M; Sugano T
    Arch Biochem Biophys; 1994 Feb; 308(2):349-56. PubMed ID: 8109964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidation of reduced cytosolic nicotinamide adenine dinucleotide by the malate-aspartate shuttle in the K-562 human leukemia cell line.
    López-Alarcón L; Eboli ML
    Cancer Res; 1986 Nov; 46(11):5589-91. PubMed ID: 3756905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and properties of dolphin muscle aspartate and alanine transaminases and thier possible roles in the energy metabolism of diving mammals.
    Owen TG; Hochachka PW
    Biochem J; 1974 Dec; 143(3):541-53. PubMed ID: 4462740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of neuronal Ca(2+) influx by gabapentin and subsequent reduction of neurotransmitter release from rat neocortical slices.
    Fink K; Meder W; Dooley DJ; Göthert M
    Br J Pharmacol; 2000 Jun; 130(4):900-6. PubMed ID: 10864898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.