BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11746599)

  • 1. The catabolic capacity of Saccharomyces cerevisiae is preserved to a higher extent during carbon compared to nitrogen starvation.
    Nilsson A; Påhlman IL; Jovall PA; Blomberg A; Larsson C; Gustafsson L
    Yeast; 2001 Nov; 18(15):1371-81. PubMed ID: 11746599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen.
    Jørgensen H; Olsson L; Rønnow B; Palmqvist EA
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):310-7. PubMed ID: 12111163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapamycin pre-treatment preserves viability, ATP level and catabolic capacity during carbon starvation of Saccharomyces cerevisiae.
    Thomsson E; Svensson M; Larsson C
    Yeast; 2005 Jun; 22(8):615-23. PubMed ID: 16034823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a carbon source on polyphosphate accumulation in Saccharomyces cerevisiae.
    Vagabov VM; Trilisenko LV; Kulakovskaya TV; Kulaev IS
    FEMS Yeast Res; 2008 Sep; 8(6):877-82. PubMed ID: 18647178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae.
    Albers E; Larsson C; Andlid T; Walsh MC; Gustafsson L
    Appl Environ Microbiol; 2007 Aug; 73(15):4839-48. PubMed ID: 17545328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae.
    Thomsson E; Larsson C
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):533-42. PubMed ID: 16317544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.
    Parrou JL; Enjalbert B; Plourde L; Bauche A; Gonzalez B; François J
    Yeast; 1999 Feb; 15(3):191-203. PubMed ID: 10077186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae.
    Thomsson E; Larsson C; Albers E; Nilsson A; Franzén CJ; Gustafsson L
    Appl Environ Microbiol; 2003 Jun; 69(6):3251-7. PubMed ID: 12788723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the adenosine phosphate pool level to changes in the catabolic pattern of Saccharomyces cerevisiae.
    Akbar MD; Rickard PA; Moss FJ
    Biotechnol Bioeng; 1974 Apr; 16(4):455-74. PubMed ID: 4605056
    [No Abstract]   [Full Text] [Related]  

  • 10. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions.
    Larsson C; Nilsson A; Blomberg A; Gustafsson L
    J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity.
    Abbott DA; van den Brink J; Minneboo IM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):349-57. PubMed ID: 19416100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.
    Thomsson E; Gustafsson L; Larsson C
    Appl Environ Microbiol; 2005 Jun; 71(6):3007-13. PubMed ID: 15932996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Kluyver effect for trehalose in Saccharomyces cerevisiae.
    Malluta EF; Decker P; Stambuk BU
    J Basic Microbiol; 2000; 40(3):199-205. PubMed ID: 10957961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Limiting the growth of Saccharomyces serevisiae yeasts under chemostat conditions by carbon and nitrogen sources].
    Shkidchenko AN
    Mikrobiologiia; 1984; 53(1):58-62. PubMed ID: 6369084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose and the ATP paradox in yeast.
    Somsen OJ; Hoeben MA; Esgalhado E; Snoep JL; Visser D; van der Heijden RT; Heijnen JJ; Westerhoff HV
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):593-9. PubMed ID: 11085955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.
    Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HXT5 expression is determined by growth rates in Saccharomyces cerevisiae.
    Verwaal R; Paalman JW; Hogenkamp A; Verkleij AJ; Verrips CT; Boonstra J
    Yeast; 2002 Sep; 19(12):1029-38. PubMed ID: 12210898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.