BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11746677)

  • 1. Revisiting the structural flexibility of the complex p21(ras)-GTP: the catalytic conformation of the molecular switch II.
    Soares TA; Miller JH; Straatsma TP
    Proteins; 2001 Dec; 45(4):297-312. PubMed ID: 11746677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does GAP catalyze the GTPase reaction of Ras? A computer simulation study.
    Glennon TM; VillĂ  J; Warshel A
    Biochemistry; 2000 Aug; 39(32):9641-51. PubMed ID: 10933780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by ab initio QM/MM simulations.
    Grigorenko BL; Nemukhin AV; Shadrina MS; Topol IA; Burt SK
    Proteins; 2007 Feb; 66(2):456-66. PubMed ID: 17094109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of guanosine triphosphate hydrolysis in ras p21 proteins.
    Langen R; Schweins T; Warshel A
    Biochemistry; 1992 Sep; 31(37):8691-6. PubMed ID: 1390653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ras-p21 bound to GDP and GTP: differences in protein and ligand dynamics.
    Mello LV; van Aalten DM; Findlay JB
    Protein Eng; 1997 Apr; 10(4):381-7. PubMed ID: 9194162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the average structures, from molecular dynamics, of complexes of GTPase activating protein (GAP) with oncogenic and wild-type ras-p21: identification of potential effector domains.
    Chen JM; Friedman FK; Brandt-Rauf PW; Pincus MR; Chie L
    J Protein Chem; 2002 Jul; 21(5):349-59. PubMed ID: 12206509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G proteins, effectors and GAPs: structure and mechanism.
    Sprang SR
    Curr Opin Struct Biol; 1997 Dec; 7(6):849-56. PubMed ID: 9434906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QM/MM modeling the Ras-GAP catalyzed hydrolysis of guanosine triphosphate.
    Grigorenko BL; Nemukhin AV; Topol IA; Cachau RE; Burt SK
    Proteins; 2005 Aug; 60(3):495-503. PubMed ID: 15906320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid QM/MM vs Pure MM Molecular Dynamics for Evaluating Water Distribution within p21
    Tichauer RH; Favre G; Cabantous S; Brut M
    J Phys Chem B; 2019 May; 123(18):3935-3944. PubMed ID: 30991803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structure of p21 in the active conformation and analysis of an oncogenic mutant.
    Wittinghofer F; Krengel U; John J; Kabsch W; Pai EF
    Environ Health Perspect; 1991 Jun; 93():11-5. PubMed ID: 1773783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of Gly-12-->Val mutant of p21(ras): dynamic inhibition mechanism.
    Futatsugi N; Tsuda M
    Biophys J; 2001 Dec; 81(6):3483-8. PubMed ID: 11721009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5'-triphosphate hydrolysis of p21ras.
    Schweins T; Geyer M; Kalbitzer HR; Wittinghofer A; Warshel A
    Biochemistry; 1996 Nov; 35(45):14225-31. PubMed ID: 8916907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis.
    Privé GG; Milburn MV; Tong L; de Vos AM; Yamaizumi Z; Nishimura S; Kim SH
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3649-53. PubMed ID: 1565661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras.
    Xu S; Long BN; Boris GH; Chen A; Ni S; Kennedy MA
    Acta Crystallogr D Struct Biol; 2017 Dec; 73(Pt 12):970-984. PubMed ID: 29199977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of p21H-ras and its implications.
    Wittinghofer F
    Semin Cancer Biol; 1992 Aug; 3(4):189-98. PubMed ID: 1421163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hydration of Ras p21 in solution during GTP hydrolysis based on solution X-ray scattering profile.
    Fujisawa T; Uruga T; Yamaizumi Z; Inoko Y; Nishimura S; Ueki T
    J Biochem; 1994 May; 115(5):875-80. PubMed ID: 7961601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanine-nucleotide binding activity, interaction with GTPase-activating protein and solution conformation of the human c-Ha-Ras protein catalytic domain are retained upon deletion of C-terminal 18 amino acid residues.
    Fujita-Yoshigaki J; Ito Y; Yamasaki K; Muto Y; Miyazawa T; Nishimura S; Yokoyama S
    J Protein Chem; 1992 Dec; 11(6):731-9. PubMed ID: 1466766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: an experimental and theoretical study.
    Frech M; Darden TA; Pedersen LG; Foley CK; Charifson PS; Anderson MW; Wittinghofer A
    Biochemistry; 1994 Mar; 33(11):3237-44. PubMed ID: 8136358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for conformational dynamics of GTP-bound Ras protein.
    Shima F; Ijiri Y; Muraoka S; Liao J; Ye M; Araki M; Matsumoto K; Yamamoto N; Sugimoto T; Yoshikawa Y; Kumasaka T; Yamamoto M; Tamura A; Kataoka T
    J Biol Chem; 2010 Jul; 285(29):22696-705. PubMed ID: 20479006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why have mutagenesis studies not located the general base in ras p21.
    Schweins T; Langen R; Warshel A
    Nat Struct Biol; 1994 Jul; 1(7):476-84. PubMed ID: 7664067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.