BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11746679)

  • 21. Design and Development of Autotaxin Inhibitors.
    Jia Y; Li Y; Xu XD; Tian Y; Shang H
    Pharmaceuticals (Basel); 2021 Nov; 14(11):. PubMed ID: 34832985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complexity of the eukaryotic dolichol-linked oligosaccharide scramblase suggested by activity correlation profiling mass spectrometry.
    Verchère A; Cowton A; Jenni A; Rauch M; Häner R; Graumann J; Bütikofer P; Menon AK
    Sci Rep; 2021 Jan; 11(1):1411. PubMed ID: 33446867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A decade of research on the second messenger c-di-AMP.
    Yin W; Cai X; Ma H; Zhu L; Zhang Y; Chou SH; Galperin MY; He J
    FEMS Microbiol Rev; 2020 Nov; 44(6):701-724. PubMed ID: 32472931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of catalysis and inhibition of Mycobacterium tuberculosis SapM, implications for the development of novel antivirulence drugs.
    Fernandez-Soto P; Bruce AJE; Fielding AJ; Cavet JS; Tabernero L
    Sci Rep; 2019 Jul; 9(1):10315. PubMed ID: 31312014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and Functional Characterization of the BcsG Subunit of the Cellulose Synthase in Salmonella typhimurium.
    Sun L; Vella P; Schnell R; Polyakova A; Bourenkov G; Li F; Cimdins A; Schneider TR; Lindqvist Y; Galperin MY; Schneider G; Römling U
    J Mol Biol; 2018 Sep; 430(18 Pt B):3170-3189. PubMed ID: 30017920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester.
    van Loo B; Schober M; Valkov E; Heberlein M; Bornberg-Bauer E; Faber K; Hyvönen M; Hollfelder F
    J Mol Biol; 2018 Mar; 430(7):1004-1023. PubMed ID: 29458126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily.
    Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D
    J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer.
    Pabis A; Duarte F; Kamerlin SC
    Biochemistry; 2016 Jun; 55(22):3061-81. PubMed ID: 27187273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoA(aty)) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases.
    Lin X; Wang L; Shi X; Lin S
    Front Microbiol; 2015; 6():868. PubMed ID: 26379645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation.
    Bräsen C; Esser D; Rauch B; Siebers B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):89-175. PubMed ID: 24600042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization of different types of transition states in a single enzyme active site: QM/MM analysis of enzymes in the alkaline phosphatase superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2013 Jul; 135(28):10457-69. PubMed ID: 23786365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling catalytic promiscuity in the alkaline phosphatase superfamily.
    Duarte F; Amrein BA; Kamerlin SC
    Phys Chem Chem Phys; 2013 Jul; 15(27):11160-77. PubMed ID: 23728154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Why nature really chose phosphate.
    Kamerlin SC; Sharma PK; Prasad RB; Warshel A
    Q Rev Biophys; 2013 Feb; 46(1):1-132. PubMed ID: 23318152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis.
    Piek S; Kahler CM
    Front Cell Infect Microbiol; 2012; 2():162. PubMed ID: 23267440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall.
    Orlean P
    Genetics; 2012 Nov; 192(3):775-818. PubMed ID: 23135325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular function and molecular structure of ecto-nucleotidases.
    Zimmermann H; Zebisch M; Sträter N
    Purinergic Signal; 2012 Sep; 8(3):437-502. PubMed ID: 22555564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular differences between a mutase and a phosphatase: investigations of the activation step in Bacillus cereus phosphopentomutase.
    Iverson TM; Panosian TD; Birmingham WR; Nannemann DP; Bachmann BO
    Biochemistry; 2012 Mar; 51(9):1964-75. PubMed ID: 22329805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Divergence and convergence in enzyme evolution.
    Galperin MY; Koonin EV
    J Biol Chem; 2012 Jan; 287(1):21-28. PubMed ID: 22069324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
    Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D
    J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.