BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11746772)

  • 21. Effects of transforming growth factor beta, tumor necrosis factor alpha and interferon gamma on pancreatic islet beta-cell responsiveness to transforming growth factor alpha.
    Sjöholm A
    Biosci Rep; 1996 Oct; 16(5):415-23. PubMed ID: 8913531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TNFalpha mediates Schwann cell death by upregulating p75NTR expression without sustained activation of NFkappaB.
    Boyle K; Azari MF; Cheema SS; Petratos S
    Neurobiol Dis; 2005 Nov; 20(2):412-27. PubMed ID: 15905096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of Schwann cell nerve growth factor receptor by cyclic adenosine 3',5'-monophosphate.
    Mokuno K; Sobue G; Reddy UR; Wurzer J; Kreider B; Hotta H; Baron P; Ross AH; Pleasure D
    J Neurosci Res; 1988; 21(2-4):465-72. PubMed ID: 2851058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Downregulation of c-myc expression by tumor necrosis factor-alpha in combination with transforming growth factor-beta or interferon-gamma with concomitant inhibition of proliferation in human cell lines.
    Hori M; Kamijo R; Takeda K; Nagumo M
    J Interferon Res; 1994 Apr; 14(2):49-55. PubMed ID: 8077765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basic fibroblast growth factor prevents cAMP-induced apoptosis in cultured Schwann cells.
    Shaw R; Cianchetti R; Pleasure D; Kreider B
    J Neurosci Res; 1997 Feb; 47(4):400-4. PubMed ID: 9057133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interferon-gamma, interleukin-4 and transforming growth factor-beta mRNA expression in multiple sclerosis and myasthenia gravis.
    Link J
    Acta Neurol Scand Suppl; 1994; 158():1-58. PubMed ID: 7732782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ketamine inhibits the proinflammatory cytokine-induced reduction of cardiac intracellular cAMP accumulation.
    Hill GE; Anderson JL; Lyden ER
    Anesth Analg; 1998 Nov; 87(5):1015-9. PubMed ID: 9806674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of inflammatory cytokines IL-1beta, IL-6, and TNFalpha on the intracellular localization of retinoid receptors in Schwann cells.
    Mey J; Schrage K; Wessels I; Vollpracht-Crijns I
    Glia; 2007 Jan; 55(2):152-64. PubMed ID: 17078027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenotypic characterization of cytokine expression in patients with IgA nephropathy.
    Yano N; Endoh M; Nomoto Y; Sakai H; Fadden K; Rifai A
    J Clin Immunol; 1997 Sep; 17(5):396-403. PubMed ID: 9327339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic AMP and tumor necrosis factor-alpha regulate CXCR4 gene expression in Schwann cells.
    Küry P; Köller H; Hamacher M; Cornely C; Hasse B; Müller HW
    Mol Cell Neurosci; 2003 Sep; 24(1):1-9. PubMed ID: 14550764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic interactions of interleukin 1, interferon-beta, and tumor necrosis factor in terminally differentiating a mouse myeloid leukemic cell line (M1). Evidence that interferon-beta is an autocrine differentiating factor.
    Onozaki K; Urawa H; Tamatani T; Iwamura Y; Hashimoto T; Baba T; Suzuki H; Yamada M; Yamamoto S; Oppenheim JJ
    J Immunol; 1988 Jan; 140(1):112-9. PubMed ID: 3275716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Icariin inhibits TNF-α/IFN-γ induced inflammatory response via inhibition of the substance P and p38-MAPK signaling pathway in human keratinocytes.
    Kong L; Liu J; Wang J; Luo Q; Zhang H; Liu B; Xu F; Pang Q; Liu Y; Dong J
    Int Immunopharmacol; 2015 Dec; 29(2):401-407. PubMed ID: 26507164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TNF-alpha and TGF-beta act synergistically to kill Schwann cells.
    Skoff AM; Lisak RP; Bealmear B; Benjamins JA
    J Neurosci Res; 1998 Sep; 53(6):747-56. PubMed ID: 9753202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcitonin gene-related peptide mediates an inflammatory response in Schwann cells via cAMP-dependent ERK signaling cascade.
    Permpoonputtana K; Porter JE; Govitrapong P
    Life Sci; 2016 Jan; 144():19-25. PubMed ID: 26596264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-type-specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: comparison of Schwann cells with other cell types.
    Matsuoka I; Meyer M; Thoenen H
    J Neurosci; 1991 Oct; 11(10):3165-77. PubMed ID: 1658245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytokines and peripheral nerve disorders.
    Créange A; Barlovatz-Meimon G; Gherardi RK
    Eur Cytokine Netw; 1997 Jun; 8(2):145-51. PubMed ID: 9262963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transforming growth factor-beta and gamma-interferon have dual effects on growth of peripheral glia.
    Eccleston PA; Jessen KR; Mirsky R
    J Neurosci Res; 1989 Dec; 24(4):524-30. PubMed ID: 2513415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microglia play a role in mediating the effects of cytokines on the structure and function of the rat pineal gland.
    Tsai SY; O'Brien TE; McNulty JA
    Cell Tissue Res; 2001 Mar; 303(3):423-31. PubMed ID: 11320658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytokine induction in HTLV-I associated myelopathy and adult T-cell leukemia: alternate molecular mechanisms underlying retroviral pathogenesis.
    Tendler CL; Greenberg SJ; Burton JD; Danielpour D; Kim SJ; Blattner WA; Manns A; Waldmann TA
    J Cell Biochem; 1991 Aug; 46(4):302-11. PubMed ID: 1757474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition.
    Morgan L; Jessen KR; Mirsky R
    J Cell Biol; 1991 Feb; 112(3):457-67. PubMed ID: 1704008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.